Spectral functions in NRG

Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia

Green's functions - review

$$G_{AB}(t) = \langle \langle A; B \rangle \rangle_t := -i\theta(t) \langle [A(t), B(0)]_{\pm} \rangle$$

+ if A and B are fermionic operators- if A and B are bosonic operators

$$A(t) = e^{iHt} A e^{-iHt}$$
$$\langle \hat{O} \rangle = \operatorname{Tr} \left[\rho \hat{O} \right] \qquad \rho = \frac{e^{-\beta H}}{Z}$$

Also known as the **retarded** Green's function.

NOTE: ħ=1

Following T. Pruschke: Vielteilchentheorie des Festkorpers

Laplace transformation:

$$G_{AB}(z) = \langle \langle A; B \rangle \rangle_z = \int_0^\infty \mathrm{d}t e^{izt} \langle \langle A; B \rangle \rangle_t, \quad \Im z > 0$$

Inverse Laplace transformation:

$$G_{AB}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathrm{d}\omega e^{-i(\omega+i\delta)t} G_{AB}(\omega+i\delta)$$

Impurity Green's function (for SIAM):

$$G(z) = \langle \langle d; d^{\dagger} \rangle \rangle_z$$

Equation of motion

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \langle A; B \rangle \rangle_t = \langle \langle \dot{A}; B \rangle \rangle_t - i\delta(t) \langle [A, B]_{\pm} \rangle$$

$$z\langle\langle A;B\rangle\rangle_z = \langle\langle [A,H];B\rangle\rangle_z + \langle [A,B]_{\pm}\rangle$$

Example 1:
$$H = (\epsilon - \mu)d^{\dagger}d$$
 $G(z) = \langle \langle d; d^{\dagger} \rangle \rangle_{z}$
 $[d, H] = (\epsilon - \mu)[d, d^{\dagger}d] = (\epsilon - \mu)d$
 $[d, d^{\dagger}]_{+} = 1$
 $zG(z) = (\epsilon - \mu)G(z) + 1$ $G(z) = \frac{1}{z - (\epsilon - \mu)}$

Example 2:
$$H = \sum_{k\sigma} (\epsilon_k - \mu) c_{k\sigma}^{\dagger} c_{k\sigma}$$
$$[c_{k\sigma}, H] = (\epsilon_{k\sigma} - \mu) c_{k\sigma}$$
$$[c_{k\sigma}, c_{k'\sigma'}^{\dagger}]_{+} = \delta_{kk'} \delta_{\sigma\sigma'}$$
$$G_{k\sigma,k'\sigma'}(z) = \langle \langle c_{k\sigma}; c_{k'\sigma'} \rangle \rangle_{z}$$

$$G_{k\sigma,k'\sigma'}(z) = \frac{\delta_{kk'}\delta_{\sigma\sigma'}}{z - (\epsilon_k - \mu)}$$

Example 3: resonant-level model

$$H = \epsilon d^{\dagger}d + \sum_{k} \epsilon_{k}c_{k}^{\dagger}c_{k} + \sum_{k} V_{k}\left(d^{\dagger}c_{k} + c_{k}^{\dagger}d\right)$$
$$G_{dd} = \langle\langle d; d^{\dagger}\rangle\rangle \qquad G_{kk'} = \langle\langle c_{k}; c_{k'}\rangle\rangle$$

$$zG_{dd} = 1 + \langle \langle [d, H]; d^{\dagger} \rangle \rangle$$

$$\begin{split} [d,H] &= \epsilon d + \sum_{k} V_{k} c_{k} \qquad \qquad G_{kd} \\ (z-\epsilon)G_{dd} &= 1 + \sum_{k} V_{k} \langle \langle c_{k}; d^{\dagger} \rangle \rangle \\ zG_{kd} &= \langle \langle [c_{k},H]; d^{\dagger} \rangle \rangle \quad \text{Here we have} \end{split}$$

Here we have set $\mu=0$. Actually, this convention is followed in the NRG, too.

$$[c_k, H] = \epsilon_k c_k + V_k d$$

$$(z - \epsilon_k) G_{kd} = V_k \langle \langle d; d^{\dagger} \rangle \rangle$$

$$G_{kd} = \frac{V_k}{z - \epsilon_k} G_{dd}$$

$$(z - \epsilon) G_{dd} = 1 + \sum_k V_k \frac{V_k}{z - \epsilon_k} G_{dd}$$

Hybridization function: **fully** describes the effect of the conduction band on the impurity

$$\Delta(z) = \sum_{k} \frac{V_k^2}{z - \epsilon_k}$$

$$G_{dd}(z) = \frac{1}{z - \epsilon - \Delta(z)}$$

Spectral decomposition $C_{AB}^{>} = \langle A(t)B \rangle \qquad C_{AB}^{<} = \langle BA(t) \rangle$ $C_{AB}^{>,<}(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} C_{AB}^{>,<}(t)$ $G_{AB}(t) = -i\theta(t)(C_{AB}^{>}(t) + \epsilon C_{AB}^{<}(t))$ ϵ =+1 if A and B are fermionic, otherwise ϵ =-1. $G_{AB}(z) = \int^{\infty} \mathrm{d}\omega \frac{\rho_{AB}(\omega)}{z}$ spectral representation

$$\rho_{AB}(\omega) = \frac{1}{2\pi} \left(C^{>}_{AB}(\omega) + \varepsilon C^{<}_{AB}(\omega) \right) \quad \text{sp}$$

spectral function

$$\rho_{AB}(\omega) = -\frac{1}{2\pi i} \left(G_{AB}(\omega + i\delta) - G_{AB}(\omega - i\delta) \right) = -\frac{1}{\pi} G_{AB}^{\prime\prime}(\omega)$$

If
$$A = B^{\dagger} : G_{AB}''(\omega) = \operatorname{Im} G_{AB}(\omega + i\delta)$$

Relevant for
$$A = d, B = d^{\dagger}$$

$$G(z) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\text{Im}G(\omega + i\delta)}{z - \omega}$$

$$p_n = e^{-\beta E_n}$$

$$\downarrow$$

$$C_{AB}^{>}(t) = \langle e^{iHt} A e^{-iHt} B \rangle = \sum_{nm} p_n A_{nm} B_{mn} e^{i(E_n - E_m)t}$$

$$C_{AB}^{>}(\omega) = \sum_{nm} p_n A_{nm} B_{mn} 2\pi \delta(\omega + E_n - E_m)$$
$$C_{AB}^{<}(\omega) = \sum_{nm} p_m A_{nm} B_{mn} 2\pi \delta(\omega + E_n - E_m)$$
$$G_{AB}^{\prime\prime}(\omega) = -\pi \sum_{nm} p_n A_{nm} B_{mn} \delta(\omega + E_n - E_m) \left(1 + \epsilon e^{-\beta \omega}\right)$$

nm

Lehmann representation

Fluctuation-dissipation theorem

$$\langle AB \rangle = -\int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{\pi} \frac{G_{AB}''(\omega)}{1 + \epsilon e^{-\beta\omega}}$$

Useful for testing the results of spectral-function calculations!

Caveat: G"(ω) may have a delta peak at ω =0, which NRG will not capture.

Dynamic quantities: Spectral density

Spectral density/function:

$$A(\omega) = -\frac{1}{\pi} \operatorname{Im} G(\omega + i\delta) = -\frac{1}{\pi} \operatorname{Im} G^{R}(\omega)$$

Describes single-particle excitations: at which energies it is possible to add an electron (ω >0) or a hole (ω <0).

Traditional way: at NRG step N we take excitation energies in the interval [$a \omega_N$: $a \Lambda^{1/2} \omega_N$] or [$a \omega_N$: $a \Lambda \omega_N$], where a is a number of order 1. This defines the value of the spectral function in this same interval.

$$A(\omega) = \sum_{nm} \left| \langle m | d^{\dagger} | n \rangle \right|^2 \delta(\omega - E_m - E_n) \frac{e^{-\beta E_m} + e^{-\beta E_n}}{Z}$$

p: patching parameter (in units of energy scale at N+1-th iteration)

Broadening: traditional log-Gaussian

smooth=old

 $w(\omega, E) = lG(\omega, E)\theta(\omega E)\theta(|\omega| - \Omega) + G(\omega, E)\theta(\Omega - |\omega|)$

$$lG(\omega, E) = \frac{e^{-b^2/4}}{bE\sqrt{\pi}} \exp\left[-\left(\frac{(\log\omega - \log E)}{b}\right)^2\right]$$
$$G(\omega, E) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{\omega - E}{\sigma}\right)^2\right]$$

Broadening: modified log-Gaussian

smooth=wvd

 $w(\omega, E) = mlG(\omega, E)h(|E|) + \tilde{G}(\omega, E)[1 - h(|E|)]$

$$mLG(\omega, E) = \frac{\theta(\omega E)}{\alpha |\omega| \sqrt{\pi}} \exp\left[-\left(\frac{\log(\omega/E)}{\alpha} - \gamma\right)^2\right] \qquad \gamma = \alpha/4$$
$$\tilde{G}(\omega, E) = \frac{1}{\omega_0 \sqrt{\pi}} \exp\left[-\left(\frac{\omega - E}{\omega_0}\right)^2\right]$$

$$h(x) = \exp\left[-\left(\frac{\ln(x/\omega_0)}{\alpha}\right)^2\right]$$

for x< ω 0, 1 otherwise.

Broadening: modified log-Gaussian

$$w(\omega, E) = mlG(\omega, E)h(|\omega|) + \tilde{G}(\omega, E)[1 - h(|\omega|)]$$

Produces smoother spectral functions at finite temperatures (less artifacts at ω =T).

Other kernels

smooth=newsc

$$w(\omega, E) = mlG(\omega, E)\theta(|\omega| - \Omega) + \tilde{G}(\omega, E)\theta(\Omega - |\omega|)$$

For problems with a superconducting gap (below Ω).

smooth=lorentz

$$w(\omega, E) = L(\omega, E)$$
$$L(\omega, E) = \frac{\eta}{\pi} \frac{1}{(\omega - E)^2 + \eta^2}$$

If a kernel with constant width is required (rarely!).

Log-Gaussian broadening

$$F_b(\omega,\omega_0) = \frac{e^{-b^2/4}}{b\sqrt{\pi}} \exp\left(-\frac{(\ln\omega - \ln\omega_0)^2}{b^2}\right)$$

1) Features at ω =0

Equations of motion for SIAM:

$$\begin{split} H &= \sum_{\sigma} \epsilon d_{\sigma}^{\dagger} d_{\sigma} + \sum_{k\sigma} \epsilon_{k} c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_{k\sigma} V_{k} \left(d_{\sigma}^{\dagger} c_{k\sigma} + c_{k\sigma}^{\dagger} d_{\sigma} \right) + H_{\text{int}} [d_{\sigma}^{\dagger}, d_{\sigma}] \\ &z G_{dd} = 1 + \left\langle \left\langle [d_{\sigma}, H]; d_{\sigma}^{\dagger} \right\rangle \right\rangle \\ &[d_{\sigma}, H] = \epsilon d_{\sigma} + \sum_{k} V_{k} c_{k\sigma} + [d_{\sigma}, H_{\text{int}}] \\ (z - \epsilon) G_{dd} = 1 + \sum_{k} V_{k} \langle \langle c_{k}; d^{\dagger} \rangle \rangle + \left\langle \left\langle [d_{\sigma}, H_{\text{int}}]; d_{\sigma}^{\dagger} \right\rangle \right\rangle \\ &(z - \epsilon) G_{dd} = 1 + \Delta(z) G_{dd} + \left\langle \left\langle [d_{\sigma}, H_{\text{int}}]; d_{\sigma}^{\dagger} \right\rangle \right\rangle \\ &G_{dd}(z) = \frac{1}{z - \epsilon - \Sigma(z) - \Delta(z)} \\ &\Sigma_{\sigma}(z) = \frac{\left\langle \left\langle [d_{\sigma}, H_{\text{int}}]; d_{\sigma}^{\dagger} \right\rangle \right\rangle z}{\left\langle \left\langle d_{\sigma}; d_{\sigma}^{\dagger} \right\rangle \right\rangle} \end{split}$$

Single impurity Anderson model - spectral function

A(00) D

ω/D

Non-orthodox approach: analytic continuation usng Padé approximants

$$i\omega_n = i(2n+1)\pi T$$
$$G(i\omega_n) = \int \frac{A_{NRG}(\omega)}{i\omega_n - \omega} d\omega$$
$$G(i\omega_n) = \sum_j \frac{w_j}{i\omega_n - \omega_j}$$

We want to reconstruct G(z) on the real axis. We do that by **fitting a rational function** to G(z) on the imaginary axis (the Matsubara points). This works better than expected. (This is an ill-posed numerical problem. Arbitrary-precision numerics is required.)

Ž. Osolin, R. Žitko, arXiv:1302.3334

Kramers-Kronig transformation

Titchmarsh's theorem [edit]

A theorem due to Edward Charles Titchmarsh makes precise the relationship between the boundary values of holomorphic functions in the upper half-plane and the Hilbert transform (Titchmarsh 1948, Theorem 95). It gives necessary and sufficient conditions for a complex-valued square-integrable function F(x) on the real line to be the boundary value of a function in the Hardy space $H^2(U)$ of holomorphic functions in the upper half-plane U.

The theorem states that the following conditions for a complex-valued square-integrable function $F : \mathbf{R} \to \mathbf{C}$ are equivalent:

• F(x) is the limit as $z \to x$ of a holomorphic function F(z) in the upper half-plane such that

$$\int_{-\infty}^{\infty} |F(x+iy)|^2 \, dx < K.$$

- -Im(F) is the Hilbert transform of Re(F), where Re(F) and Im(F) are real-valued functions with F = Re(F) + i Im(F).
- The Fourier transform $\mathcal{F}(F)(x)$ vanishes for x < 0.

VOLUME 33, NUMBER 11

Photoemission spectroscopy for the spin-degenerate Anderson model

H. O. Frota* and L. N. Oliveira

Departamento de Física e Ciência dos Materiais, Instituto de Física e Química de São Carlos, Universidade de São Paulo, 13560 São Carlos, São Paulo, Brazil (Received 17 March 1986)

PHYSICAL REVIEW B

VOLUME 45, NUMBER 3

15 JANUARY 1992-I

Shape of the Kondo resonance

H. O. Frota*

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200 (Received 6 August 1990; revised manuscript received 29 July 1991)

Inverse-square-root asymptotic behavior

Inverse square root behavior also found using the quantum Monte Carlo (QMC) approach: Silver, Gubernatis, Sivia, Jarrell, Phys. Rev. Lett. **65** 496 (1990)

Anderson orthogonality catastrophe physics Doniach, Šunjić 1970 J. Phys. C: Solid State Phys. **3** 285

Doniach-Šunjić:
$$\rho_f \sim E^{-\alpha}$$
, $\alpha = 1 - 2(\delta/\pi)^2$
 $\delta = \pi/2$, $E = \epsilon + i\Gamma_K$

$$\rho_f(\epsilon) = (\frac{1}{2}\pi\Gamma) \operatorname{Re}[(\epsilon + i\Gamma_K)/i\Gamma_K]^{-1/2}$$

The soft-gap Anderson model: comparison of renormalization group and local moment approaches

Ralf Bulla[†], Matthew T Glossop[‡], David E Logan[‡] and Thomas Pruschke§

On the scaling spectrum of the Anderson impurity model

Nigel L Dickens and David E Logan

University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford OX1 3QZ, UK

Received 23 March 2001

$$\pi \Delta_0 D(\omega) = \frac{1}{2} \left\{ \frac{1}{\left[(4/\pi) \ln(|\omega'|) \right]^2 + 1} + \frac{5}{\left[(4/\pi) \ln(|\omega'|) \right]^2 + 25} \right\}$$

Arguments:

• Kondo model features characteristic logarithmic behavior, i.e., as a function of T, all quantities are of the form $[ln(T/T_{\kappa})]^{-n}$.

Better fit to the NRG data than the Doniach-Šunjić form.
 (No constant term has to be added, either.)

Comparison with experiment?

Fano-like interference process between resonant and background scattering: $(\mathrm{d}I/\mathrm{d}V)(V) = a + b\left[(1-q^2)\mathrm{Im}\,G(eV) + 2q\mathrm{Re}\,G(eV)\right]$

$$G(\omega) = G_{\text{Kondo}}[(\omega - \omega_0)/\Delta_{\text{HWHM}}]$$

RŽ, Phys. Rev. B 84, 195116 (2011)

Density-matrix NRG

- Problem: Higher-energy parts of the spectra calculated without knowing the true ground state of the system
- Solution: 1) Compute the density matrix at the temperature of interest. It contains full information about the ground state. 2)
 Evaluate the spectral function in an additional NRG run using the *reduced density matrix* instead of the simple Boltzmann weights.

 $\hat{\rho} = \sum_{m_1, m_2, n_1, n_2} \rho_{m_1 n_1 m_2 n_2} |m_1\rangle_{\text{env}} |n_1\rangle_{\text{sys}} \langle n_2 |\langle m_2 |$

W. Hofstetter, PRL 2000

$$\rho = \frac{1}{Z} \sum_{QSS_z \omega} \exp(-\beta E_{QS\omega}) |QSS_z \omega\rangle \langle QSS_z \omega|$$

$$\rho_{\text{reduced}}^{N} = \sum_{QSS_{z}} \sum_{rr'} C_{rr'}^{QS,N} |QSS_{z}r\rangle_{N} \langle QSS_{z}r'|_{N}$$

$$\begin{split} C^{QS,N}_{rr'} &= \sum_{\omega\omega'} C^{Q-1,S,N+1}_{\omega\omega'} U_{Q-1,S}(\omega|r1) U_{Q-1,S}(\omega'|r'1) \\ &+ \sum_{\omega\omega'} C^{Q+1,S,N+1}_{\omega\omega'} U_{Q+1,S}(\omega|r4) U_{Q+1,S}(\omega'|r'4) \\ &+ \frac{2S+2}{2S+1} \sum_{\omega\omega'} C^{Q,S+\frac{1}{2},N+1}_{\omega\omega'} U_{Q,S+\frac{1}{2}}(\omega|r2) U_{Q,S+\frac{1}{2}}(\omega'|r'2) \\ &+ \frac{2S}{2S+1} \sum_{\omega\omega'} C^{Q,S-\frac{1}{2},N+1}_{\omega\omega'} U_{Q,S-\frac{1}{2}}(\omega|r3) U_{Q,S-\frac{1}{2}}(\omega'|r'3) \end{split}$$

DMNRG for non-Abelian symmetries: Zitko, Bonca, PRB 2006

Spectral function computed as:

 $A^{N}_{\mu}(\omega) = \sum_{ijm} \left(\langle j | d^{\dagger}_{\mu} | m \rangle \langle j | d^{\dagger}_{\mu} | i \rangle \rho^{\rm reduced}_{im} + \langle j | d^{\dagger}_{\mu} | m \rangle \langle i | d^{\dagger}_{\mu} | m \rangle \rho^{\rm reduced}_{ji} \right) \delta(\omega - (E_j - E_m))$

Completeness relation:

$$\sum_{m=l,e}^{N} \sum_{l,e} |l,e;m\rangle_{\text{dis dis}} \langle l,e;m| = 1$$

Complete-Fock-space NRG:

$$\rho = \frac{1}{Z} e^{-\beta H} \approx \sum_{l} \rho_{l} |l; N\rangle \langle l; N|$$
$$\rho_{l} = \frac{e^{-\beta E_{l}^{N}}}{Z_{N}} \qquad Z_{N} = \sum_{l} e^{-\beta E_{l}^{N}}$$

Anders, Schiller, PRL 2005, PRB 2006

$$G_{A,B}^{i}(z) = \frac{1}{Z} \sum_{l,l'} \langle l; N | A | l'; N \rangle \langle l'; N | B | l; N \rangle \frac{e^{-\beta E_{l}^{N}} - se^{-\beta E_{l'}^{N}}}{z + E_{l}^{N} - E_{l'}^{N}}$$

$$G_{A,B}^{ii}(z) = \sum_{m=m_{\min}}^{N-1} \sum_{l} \sum_{k,k'} A_{l,k'}(m) \rho_{k',k}^{\text{red}}(m) B_{k,l}(m) \frac{-s}{z + E_{l} - E_{k}}$$

$$G_{A,B}^{iii}(z) = \sum_{m=m_{\min}}^{N-1} \sum_{l} \sum_{k,k'} B_{l,k'}(m) \rho_{k',k}^{\text{red}}(m) A_{k,l}(m) \frac{1}{z + E_{k} - E_{l}}$$

$$\rho_{k,k'}^{\text{red}}(m) = \sum_{e} \langle k, e; m | \hat{\rho} | k', e; m \rangle$$

Peters, Pruschke, Anders, PRB 2006

Full-density-matrix NRG:

$$\rho = \sum_{m} \sum_{le} |le;m\rangle \frac{e^{-\beta E_l^m}}{Z} \langle le;m|$$

Weichselbam, von Dellt, PRL 2007

$$\begin{split} G(\omega) &= \sum_{m'=m_0+1}^{N} \frac{w_{m'}}{Z_{m'}} \sum_{ll'} A_{ll'}^{m'} B_{l'l}^{m'} \frac{(e^{-\beta E_l^{m'}} + e^{-\beta E_{l'}^{m'}})}{\omega + E_l^{m'} - E_{l'}^{m'} + i\delta} \\ &+ \sum_{m'=m_0+1}^{N-1} \frac{w_{m'}}{Z_{m'}} \sum_{lk} A_{lk}^{m'} B_{kl}^{m'} \frac{e^{-\beta E_l^{m'}}}{\omega + E_l^{m'} - E_k^{m'} + i\delta} \\ &+ \sum_{m'=m_0+1}^{N-1} \frac{w_{m'}}{Z_{m'}} \sum_{kl} A_{kl}^{m'} B_{lk}^{m'} \frac{e^{-\beta E_l^{m'}}}{\omega + E_k^{m'} - E_l^{m'} + i\delta} \\ &+ \sum_{m=m_0+1}^{N-1} \sum_{lkk'} A_{lk}^{m} \frac{R_{red}^{m}(k,k') B_{k'l}^{m}}{\omega + E_l^{m} - E_k^{m} + i\delta} \\ &+ \sum_{m=m_0+1}^{N-1} \sum_{kk'l} A_{kl}^{m} \frac{R_{red}^{m}(k',k) B_{lk'}^{m}}{\omega + E_l^{m} - E_k^{m} + i\delta}, \end{split}$$

Costi, Zlatić, PRB 2010

CFS vs. FDM vs. DMNRG

- CFS and FDM equivalent at T=0
- FDM recommended at T>0
- CFS and FDM are slower than DMNRG (all states need to be determined, more complex expressions for spectral functions)
- No patching, thus no arbitrary parameter as in DMNRG

Error bars in NRG?

Rok Žitko, PRB 84, 085142 (2011)

Average + confidence region!

A. F. Otte et al., Nature Physics 4, 847 (2008)

Kondo Effect in a Magnetic Field and the Magnetoresistivity of Kondo Alloys

T.A. Costi

Institut Laue-Langevin, 6 rue Jules Horowitz, B.P. 156, 38042 Grenoble Cedex 9, France (Received 10 April 2000)

Numerical renormalization group (NRG) calculation

Anomalous Magnetic Splitting of the Kondo Resonance

Joel E. Moore and Xiao-Gang Wen

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 4 November 1999)

Bethe Ansatz calculation using spinon density of states

J. Phys.: Condens. Matter 13 (2001) 9713-9738

Field-dependent dynamics of the Anderson impurity model

David E Logan and Nigel L Dickens

Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK

Exact result for $B \rightarrow 0$: $\Delta = (2/3)g\mu_B B$

Suggestion that for large B, Δ is larger than $g\mu_B$ B.

Field dependent quasiparticles in a strongly correlated local system

A. C. Hewson, J. Bauer, and W. Koller

Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom (Received 26 August 2005; published 19 January 2006)

$$\lim_{h \to 0} \frac{\varepsilon_p(h)}{h} = \frac{R}{1 + (R - 1)^2/2}$$

gives **2/3** for R=2, in agreement with Logan et al. (Factor 2 due to different convention.)

Also find that $\Delta > 1g\mu_B$, but they note that this might be non-universal behavior due to charge fluctuations in the Anderson model (as opposed to the Kondo model).

Magnetic field dependence of the spin- $\frac{1}{2}$ and spin-1 Kondo effects in a quantum dot

C. H. L. Quay,¹ John Cumings,^{1,*} S. J. Gamble,² R. de Picciotto,³ H. Kataura,⁴ and D. Goldhaber-Gordon¹

Interrelated problems: systematic discretization errors and spectral broadening

$$P(\omega, \omega') = \frac{\theta(\omega\omega')}{\sqrt{\pi\alpha}|\omega|} \exp\left[-\left(\frac{\log|\omega/\omega'|}{\alpha} - \frac{\alpha}{4}\right)^2\right]$$

 α determines how δ peaks are smoothed out!

B=7 T

• Experimental results for Ti adatoms:

> F. Otte et al., Nature Physics **4**, 847 (2008)

NRG calculation

R. Ž., submitted

Kondo model $G = G_0 + G_0 T G_0$ $T_{\sigma} = \langle \langle O_{\sigma}; O_{\sigma}^{\dagger} \rangle \rangle$ $O_{\sigma} = [H_{\text{coupling}}, f_{0,\sigma}]$ $H_{\rm K} = \left(\frac{1}{2} f_{0,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} f_{0,\beta}\right) \cdot \mathbf{S}$

$$O_{\sigma} = \left(\frac{1}{2}\boldsymbol{\sigma}_{\alpha\beta}f_{0,\beta}\right) \cdot \mathbf{S}$$