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Here we present a detailed analysis of the numerical
results that we perform to disentangle the different con-
tributions to the optical conductivity and identify the
source of discrepancy between DMFT and FTLM. The
analysis is performed on the imaginary axis where we
can obtain the results from CTINT. Note that at high
temperature, the Matsubara frequencies are far apart
and the values of Λ(iνn) are insensitive to the details
of σ(ω). We illustrate this in Fig. S1 where we show
that, on the Matsubara axis, the FTLM and DMFT
Λ(iνn) results are almost indistinguishable. However,
the discrepancy is not below the level of noise in our
numerics and we are able to reconstruct this difference
from three different contributions, namely the finite-size
effects, non-local self-energy effects and vertex correc-
tions, all obtained independently using combinations of
other methods. However, in the present context, we find
the CTINT method useful only as a tool for benchmark-
ing, since the analytical continuation from the imagi-
nary to the real axis introduces a systematic error, and
a precise σdc value is difficult to extract from Λ(iνn).
In Section I we present our imaginary axis analysis of
the results, and in Section II we discuss the difficulty of
analytical continuation. Then, in Section III we bench-
mark our FTLM result against analytically computed
frequency moments of the optical conductivity. In Sec-
tion IV we discuss the details of the pole-broadening
procedure used in FTLM.

I. DETAILED BENCHMARK

In Fig. S2 we show the detailed comparison and cross-
checks between the different methods in 12 doping-
temperature (p, T ) points in the Hubbard model phase
diagram at U = 2.5D = 10t. The continuous lines are
obtained by the Hilbert transform from the real-axis to
the continuous imaginary variable σ(ω) → Λ(iν), and
then taking the difference between the different meth-
ods, as written in the legend. The question we are ad-
dressing in the main text and that is considered in fur-
ther detail here is the physical origin of the difference
difference between DMFT and FTLM 4 × 4, presented
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FIG. S1. Current-current correlation function Λ(iνn) in
FTLM and DMFT (the dashed and dotted lines are guides
to the eye).

on Fig. S2 by the orange lines.

We can readily inspect the effect of finite cluster size
on the bubble Λdisc. This is given by the red line
which presents the difference between DMFT 4× 4 and
DMFT. Red circles are obtained independently on the
Matsubara axis without any analytical continuation, di-
rectly from DMFT data (DMFT here is performed with
CTINT solver), and present an additional cross-check of
our analytical continuation of the self-energy which was
used to obtain σ(ω) in DMFT. We note that the statis-
tical noise coming from CTINT in the single-site DMFT
solution is very small, and the Padé analytical contin-
uation of Σ(iωn) can be successfully performed. The
optical conductivities agree closely (within few percent)
between QMC and the numerical renormalization group
(NRG) solution.

We can also compare the red line with the difference
between the full Λ from CTINT 8× 8 and 4× 4 (purple
crosses). The agreement is solid: it appears that the
only difference between the 8 × 8 and 4 × 4 clusters is
the finite-size effects in the bubble Λdisc, and that the
finite-size effects disappear entirely already at cluster
size 8× 8. Note, however, that finite-size effects mostly
pertain to the overall integral of σ(ω) (i.e. Λ(iν = 0)),
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FIG. S2. Comparison of various parts of the current-current correlation functions Λ(iν) on the imaginary axis (see text).
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and have little impact on σdc.

The blue line presents the difference between FTLM
4× 4 and DMFT 4× 4, which is by construction the or-
ange line minus the red line, i.e. the difference between
DMFT and FTLM 4× 4, up to the finite-size effects in
the bubble.

The blue squares and black stars are the vertex correc-
tions Λconn as obtained from CTINT 4×4 and 8×8: at
T ≥ 0.5D their agreement is excellent, and even at the
lowest temperature it is likely within the statistical error
bars of the method. At the lowest temperature there is
some discrepancy but mostly due to increased statistical
error in CTINT. The problem particularly pronounced
at the biggest doping, where our CTINT 8 × 8 calcu-
lation suffers from the sign problem and failed to con-
verge properly in the available computational time (384
cpu*days per point).

We have inspected also the self-energies and found ex-
cellent agreement between CTINT 8× 8 and 4× 4 (see
Fig.3a in main text, other data not shown). We ob-
serve that the range of Σr is at most 2 lattice spacings,
which means that the longer distance components that
are captured by the 8× 8 cluster are unlikely to have a
measurable effect on any observable.

We cross check our results by calculating Λconn(iν = 0)
from the Ward identity1.

Λconn(iν = 0) = −2T
∑
k

vk
∑
iωn

G2
k(iωn)∂kxΣk(iωn)

and present it using the dark-green cross. Here we have
constructed Σk(iωn) on the lattice (64×64 grid Brillouin
zone) using the Fourier transform of the short-distance
Σr components available on the 4×4 cluster, which also
allowed us to take the derivative analytically. Again, the
agreement with the corresponding blue square and black
star is within the roughly estimated statistical error of
CTINT at all temperatures.

In most cases the blue line (difference between FTLM
4×4 and DMFT 4×4) passes through the blue squares
(vertex correction from CTINT 4×4). However, at iν =
0 there appears to be a systematic deviation, and the
blue line passes below the blue square. This we can link
to the effect of non-local self-energy on the bubble which
we calculate from the CTINT 4× 4 results and present
as green color triangles. Indeed, the green triangles are
mostly negligible except at ν = 0 where they are slightly
negative.

We check our decomposition by summing the green tri-
angles, blue squares and red circles, and comparing
them to the orange line. Within statistical error bars,
the total difference between FTLM4×4 and DMFT ap-
pears to come from 1) finite-size effects in the bubble,
2) effects of non-local self-energy in the bubble and 3)
vertex corrections.

Note, however, that the effects of non-local self-energy
on the bubble are small and visible only at the lowest
temperature, and related only to the overall integral of
σ(ω), i.e. the kinetic energy. The only measurable effect
on σ(ω = 0) = −∂νΛ(iν)|ν→0+ appears to come from
the vertex corrections. We additionally cross check this
by analytically continuing Σr6=0 from CTINT 4× 4 and
using it together with DMFT Σloc(ω) that we already
have on the real-axis from NRG solver, to construct
Σk(ω) and calculate σdisc(ω = 0) . The difference from
the pure DMFT result is negligible in relative terms
except at p = 0 and lowest T where σdc becomes very
small. We present the corresponding slope in Λ(iν) with
green color dashed lines and see that it is much smaller
that the slope of the blue line, and even in the opposite
direction.

Based on the above analysis we conclude that at T &
0.3D, finite-size effects and the effect of non-local self-
energy on σdisc

dc become negligible, and that the vertex
corrections σconn

dc are already well converged with re-
spect to the cluster size at the size 4 × 4. This builds
confidence that our FTLM 4×4 is close to exact solution
of the bulk Hubbard model.

II. UNCERTAINTIES IN THE ANALYTICAL
CONTINUATION OF Λ(iνn)

In this section we thoroughly test the Maximum En-
tropy analytical continuation (MaxEnt) of the Matsub-
ara current-current correlation function Λ(iνn)→ σ(ω).
We find that the result is strongly biased towards the
model function used in MaxEnt continuation, and there-
fore discard the CTINT results for σ(ω) in favor of
FTLM 4× 4 which requires no analytical continuation.

In Fig. S3 we compare σ(ω) and Λ(iν) between FTLM
and DMFT. As a function of continuous imaginary vari-
able, Λ(iν) is displayed by a line, and the Matsubara
frequencies are indicated with crosses. Note that only
the values at the Matsubara frequencies Λ(iνn) serve as
the input for MaxEnt. We see that most of the differ-
ence between FTLM and DMFT is encoded between the
first two Matsubara frequencies in Λ(iν). In particular,
the dc conductivity is given by σdc = −∂νΛ(iν)|ν→0+ ,
which is hard to estimate based on Λ(iνn). Although
there is a one-to-one correspondence between any given
function on the real axis and its Hilbert transform on
the imaginary axis, any amount of noise in Λ(iνn) and
a truncation of Matsubara frequencies is likely to lead
to loss of critical information necessary to distinguish
between two similar σ(ω).

Fig. S4 shows the optical conductivity obtained by the
analytical continuation of the current-current correla-
tion function Λ(iνn) from CTINT. We use the im-
plementation of the Maximum Entropy method from
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FIG. S3. Optical conductivity and current-current correlation function (see text).
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Ref. 2. We put the error bar dΛ(iνn) = 10−4. Below
this value the MaxEnt σ(ω) starts to acquire noisy and
manifestly wrong features, due to overfitting. This value
of 10−4 also agrees with the deviation in Λ(iνn) between
CTINT 4 × 4 and FTLM, attributed to the statistical
noise in CTINT. We perform annealing similar to Ref. 3:
we apply MaxEnt at temperature T = 0.5D, using ei-
ther FTLM (left column) or DMFT (middle column)
σ(ω) at T = 0.7 as the default model. MaxEnt is then
done at T = 0.3D, using the result of previous MaxEnt
as the default model. The right column in Fig. S4 shows
the resulting dc resistivities.

We see that the result of the analytical continuation
strongly depends on the initial model function at high
temperature. Furthermore, when the initial model is
given by FTLM, the result at T = 0.3 still tends to de-
viate towards the DMFT solution. The reason for this
is that the Drude-like peak in DMFT is broader than in
FTLM, and the MaxEnt generally tends to make the
spectrum smoother. This means that even with the
correct default model at the highest temperature, the
error bar introduced by annealing can easily erase any
information about the vertex corrections and produce a
result comparable to just the bubble contribution that
one can safely obtain from DMFT(NRG). When the ini-
tial default model is taken to be DMFT, the error bar
goes up to 50 percent, and the results typically resemble
the DMFT solution.

Instead of choosing as the default model the FTLM re-
sults, which are computationally expensive to obtain
(around one month on 32 cores with 80 GB of RAM
for single choice of boundary conditions), it may ap-
pear reasonable to try and start the annealing using the
high-T expansion4 result at the highest temperature.
However, as shown in Ref. 3 even high-T expansion is
not trivial to calculate, and can only yield σ(t) results
up to t ≈ 1 (t here is real time). In Fig. S5 we illustrate
how the short time conductivity holds little information
about σdc as σdc ∼

∫
dtReσ(t). The error made in the

high-T expansion then propagates in MaxEnt, and can
lead to wrong results.

Finally, it should be noted that with increasing tem-
perature, Matsubara frequencies spread out, leaving
less and less information to be extracted from even a
slightly noisy Λ(iνn). We conclude that doing MaxEnt
on CTINT 8 × 8 even with the corresponding FTLM
4 × 4 default model would not bring any information
other than what is already contained in FTLM. Our
analysis highlights the importance of developing meth-
ods that calculate the current-current correlation func-
tion directly on the real frequency axis.

III. COMPARISON WITH THE MOMENTS
FROM THE HIGH-TEMPERATURE

EXPANSION

In the high-T limit with σ(ω) ∝ 1/T , the frequency
moments µk = 1

2π

∫∞
−∞ σ(ω)ωkdω can be calculated re-

liably or even analytically3,4 as the expectation values of
certain commutators between the Hamiltonian and the
current operator. Despite the difficult to reconstruct
σ(ω), and in particular σdc from such moments with
high confidence3, the moments still provide a firm test
of the numerical approaches.

By using the real frequency σ(ω) obtained with FTLM,
we calculate frequency moments in the high-T limit for
U = 1.5D and p = 0.2. Such moments can be com-
pared to the exact values reported in Ref. 3. We find
that our FTLM moments µk for k = 0− 8, which have
main contributions from σ(ω) in the regime |ω| . 4D
(i.e. up to ω about 2D above the upper edge of the
Hubbard band), deviate from the exact moments by
. 0.2%. Some lower moments show even smaller de-
viation (see Table S1), which suggest FTLM correctly
reproduces high-T behavior with small finite size effects.
Our higher moments (k & 10) show systematic larger
deviation from the exact results due to high frequency
cutoff at ω > 5D in our FTLM results.

T → ∞ values of the FTLM moments are obtained by
fitting T dependence of 2Tµk to a + b/T 2 in the tem-
perature range between 5D and 10D. The numerical
uncertainties given in brackets in the Table S1 are ob-
tained as a standard deviation in the fitting procedure.

k 2Tµk (exact) 2Tµk (FTLM)

0 0.96 0.96001(9)

2 16.5888 16.554(4)

4 879.206 879.4(2)

6 71350.4 71525(20)

8 7.95719·106 7.963(2)·106

TABLE S1. Exact frequency moments 2Tµk taken from
Ref. 3 and the moments from integrating FTLM σ(ω) (here
the units of t = D/4 = 1 are used). The numbers in the
brackets are estimates of numerical uncertainty for the last
digits. Small deviations of FTLM moments from exact val-
ues suggest small finite size effects in the high-T limit.

IV. BROADENING IN FTLM

Optical conductivity calculated with FTLM on a finite
cluster is strictly a set of delta functions in frequency
space. The number of such delta functions grows with
the number of many-body states, leading to a high den-
sity for the used cluster sizes. Still, the delta functions
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FIG. S4. Optical conductivity obtained by MaxEnt analytical continuation of the CTINT Λ(iνn) (solid lines in the first
and the second column). The annealing method is used, where the initial model function, used for MaxEnt at T = 0.5, is
the FTLM (first column), and DMFT (second column) at T = 0.7. At T = 0.3 the model function is the MaxEnt result
from T = 0.5. The dashed (dotted) lines are FTLM (DMFT) data. The right column shows the MaxEnt resistivities,
ρ = 1/σ(ω = 0), in comparison with FTLM and DMFT ρ(T ) curves. The four rows correspond to different doping levels
p = 0.15, 0.1, 0.05, 0. The crosses are the dc resistivity corresponding to the initial model function.
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need to be broadened to get a smooth spectra, repre-
sentative of the thermodynamic limit. The value of the
broadening needs to be appropriate: sufficiently large
to remove the finite-size artifacts, but not large enough
to over-broaden the real features of the spectrum5,6.

In our case we use Gaussian broadening, with the broad-
ening parameter chosen as the parameter for which σdc
is not changing or shows smallest change with broaden-
ing, a choice to which we refer as the optimal one. See
Fig. S6. This prescription works also for finite and
high frequencies, where the delta functions are denser

and the spectra are smooth even with smaller broaden-
ing parameter. The used optimal broadening parame-
ter is substantially smaller than the width of the Drude
peak and we estimate the broadening uncertainty of ρdc
within FTLM to be below 10%.

It is worth noting that that with increasing broadening
the σdc drops monotonically. Since in all cases σdc in
DMFT is lower, there must always be a certain broaden-
ing level that reproduces the DMFT result for σdc, but
not simultaneously σ(ω) at all frequencies. We have
checked that the broadening level needed to reproduce
σdc from DMFT is about 10 times the optimal one, and
becomes comparable to the width of the Drude peak.
This choice of broadening leads to severe modification
in the shape of σ(ω), especially of the high-frequency
peak which is otherwise well determined already by a
fine binning of delta functions or with a tiny broaden-
ing. Therefore, we exclude such large broadening from
consideration.

Finally, we note that for the calculation of Λ(iνn) from
σ(ω) obtained by FTLM with Hilbert transform, Eq. (3)
in the main text, no broadening is needed due to integra-
tion and that even if the broadened σ(ω) is used, Λ(iνn)
change by the order of 10−5, which is smaller than the
symbol size in Fig. 3 (main text) and in Fig. S2 and is
also below the CTINT noise level.
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FIG. S6. Representative dependence of σdc from FTLM on
the broadening parameter and the optimal parameter ac-
cording to the minimal change of σdc with broadening. Data
are for p = 0.1 and T = 0.5D.
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