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Recent experiments on cold atoms in optical lattices allow for a quantitative comparison of the
measurements to the conductivity calculations in the square lattice Hubbard model. However, the available
calculations do not give consistent results, and the question of the exact solution for the conductivity in the
Hubbard model remained open. In this Letter, we employ several complementary state-of-the-art numerical
methods to disentangle various contributions to conductivity and identify the best available result to be
compared to experiment. We find that, at relevant (high) temperatures, the self-energy is practically local,
yet the vertex corrections remain rather important, contrary to expectations. The finite-size effects are small
even at the lattice size 4 × 4, and the corresponding Lanczos diagonalization result is, therefore, close to the
exact result in the thermodynamic limit.
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Theoretical study of transport in condensed matter
systems with strong interactions is very difficult. In many
cases there are no long-lived quasiparticles and the
conventional Boltzmann theory of transport provides
little insight. Progress can only be made using bona fide
many-body approaches to simplified lattice models or
effective field theories where approximations are made in
a controlled manner. [1–9] Even then, as only a few
specifics of a real system enter the model, the comparison
to relevant experiments can only be made at a qualitative
level. This changed very recently when Ref. [10] reported
a measurement of transport in a quantum simulator of the
fermionic Hubbard model in two dimensions (2D). The
experiment is performed on cold lithium atoms in an
optical lattice, a controllable setup free from disorder,
phonons, and other complications of realistic materials. It
is well justified to compare at the quantitative level such
experimental result for conductivity with the Hubbard
model calculations.
Reference [10] found that two state-of-the-art methods,

namely, the finite-temperature Lanczos method (FTLM)
and the dynamical mean field theory (DMFT) give con-
ductivities that differ by up to a factor 3

2
, and only FTLM

shows a solid agreement with the experiment. At high
temperatures T ≳ t relevant to these observations (for
instance, in cuprates where the hopping parameter t ≈
0.3 eV the corresponding temperature is well above the
melting temperature), one expects the correlation lengths to
be short and the approximations made in the two methods

to apply. Our aim is to reveal the physical origin of this
discrepancy and to establish a numerically exact solution in
the regime T=t≳ 1 relevant for optical lattice experiments,
as well as other narrow band systems, such as organic
superconductors [11], low temperature phase of TaS2 [12],
twisted bilayer graphene [13], and monolayer transition
metal dichalcogenides [14], such as 1T-NbSe2 [15].
It is useful to recall that the mentioned numerical

methods belong to two distinct general approaches:
(A) one solves an isolated finite cluster of lattice sites,
as representative of the thermodynamic limit [7,8,16];
(B) one solves an effective, self-consistently determined
“embedded” cluster, which provides propagators of infinite
range, yet limits the range of electronic correlations
[17–25]. The diagrammatic content of the self-energy in
the two approaches is sketched in Fig. 1(a). Approach B
captures longer distance quantum fluctuations and, there-
fore, is assumed to converge more quickly with cluster size
at the price of an iterative solution of the (embedded)
cluster, as opposed to the “single-shot” calculation in
approach A. FTLM solves a 4 × 4 isolated cyclic cluster
and belongs to A. DMFT is an embedded cluster calcu-
lation (B) with the cluster size one, and therefore, it
approximates the self-energy by a purely local quantity.
Therefore, there are three possible sources of discrep-

ancy between the DMFT and FTLM results for resistivity:
(i) nonlocal correlations which are encoded in the nonlocal
corrections to self-energy, present in FTLM but beyond
the DMFT approximation; (ii) quantum fluctuations at
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distances beyond the linear size of the FTLM cluster;
DMFT captures them through an effective fermionic bath;
(iii) vertex corrections, included within FTLM but
neglected within DMFT where one calculates only the
bubble contribution. We recall that the two-particle cor-
relation functions can be split into the disconnected part
(“the bubble”) and the connected part (“vertex correc-
tions”), as shown in Fig. 1(b). The bubble captures only
the single-particle scattering off the medium, described by
the self-energy which enters the full Green’s function. The
collective excitations come from the particle-hole scatter-
ing, and are present only in the vertex corrections.
Whereas the contribution of the connected part is always
important for charge susceptibility [26–28], in the
large dimensionality limit the vertex corrections to con-
ductivity cancel [29] (the full vertex F loses kk0 depend-
ence and the current vertex is odd v−k ¼ −vk, unlike the
charge vertex which is even). In finite dimensions, how-
ever, the vertex corrections do contribute to conductivity
as discussed previously in several approximative
approaches at low temperatures [30–36]. Based on the
Ward identity, one could think that when the correlations
are approximately local, the vertex corrections become
negligible [30,32]. We show that this expectation is not
satisfied [37] and that, despite the nonlocal self-energy
being practically negligible at T ≳ 0.3D, the vertex cor-
rections still amount to a sizable shift in dc resistivity.
Additionally, we show that long-distance quantum fluc-
tuations have little effect on dc conductivity, thus, a 4 × 4
isolated-cluster calculation is sufficient to obtain exact
results for the bulk model.
Model.—We consider the Hubbard model on the square

lattice

H ¼ −t
X

σ;hi;ji
c†σicσj þU

X

i

n↑in↓i − μ
X

σ;i

nσi; ð1Þ

where c†σi=cσi creates or annihilates an electron of spin σ at
the lattice site i. The hopping amplitude between the
nearest neighbors is denoted t, and we set D ¼ 4t as the
unit of energy. We also take lattice spacing a ¼ 1, and
ℏ ¼ e ¼ 1. The density operator is nσi ¼ c†σicσi, the
chemical potential μ, and the on-site Hubbard interaction
U. Throughout the Letter, we keep U ¼ 2.5D, which
corresponds to the (doped) Mott insulator regime, and
assume paramagnetic solutions with full lattice symmetry.
Formalism.—The conductivity is defined in terms of the

current-current correlation function

Λxx
q ðiνnÞ≡

X

i

e−iq·ri
Z

dτeiνnτhjxi ðτÞjxi¼0ð0Þi; ð2Þ

where τ is imaginary time, iνn ¼ 2inπT is the bosonic
Matsubara frequency, ri ¼ ðxi; yiÞ denotes the real-space
vector of the site i. The current operator j is defined as
jxi ¼ −it

P
σc

†
σicσ;n:n:ði;xÞ þ H:c: where n:n:ði; xÞ denotes

the nearest neighbor in the x direction. We are interested
in longitudinal, uniform conductivity σxxq¼0ðωÞ, so we
adopt a shorthand notation ΛðiνnÞ≡ Λxx

q¼0ðiνnÞ and
σðωÞ≡ σxxq¼0ðωÞ. The optical conductivity is given by
[38] σðωÞ ¼ −ði=ωÞ½ΛðωÞ − Λðω ¼ 0Þ�, where ΛðωÞ is
the analytical continuation of ΛðiνnÞ to the real axis,
i.e., the inverse of the Hilbert transform

ΛðiνÞ ¼ 1

π

Z
dω

ImΛðωÞ
ω − iν

¼ 1

π

Z
dω

ωReσðωÞ
ω − iν

: ð3Þ

The second equality in Eq. (3) is due to ImΛðω ¼ 0Þ ¼ 0.
The direct-current (dc) conductivity is defined as
σdc ¼ Reσðω ¼ 0Þ ¼ ImΛ0ðω ¼ 0Þ, and the dc resistivity
is then ρdc ¼ 1=σdc.
In order to better identify and understand the importance

of various processes for the transport, we also calculate the
charge susceptibility χc ¼ dhni=dμ, which corresponds to
the charge-charge correlation function [39]. Both χc and Λ
can be separated into the bubble and the vertex corrections
part [40], Fig. 1. In all quantities, the superscript “disc”
denotes the bubble contribution, and the superscript
“conn,” the vertex corrections part.
Methods A.—We solve an isolated cyclic 4 × 4 cluster

using the FTLM [41,42] method and both 4 × 4 and 8 × 8
using quantum Monte Carlo calculations [the continuous-
time interaction-expansion algorithm (CTINT) [20,43] ]
Both methods yield numerically exact solutions of the
representative finite-size model. In FTLM, we calculate
σðωÞ, while CTINTyieldsΛðiνnÞ, as well as the self-energy
ΣijðiωnÞ and the Green’s function GijðiωnÞ [44]. Note that
both CTINTand FTLM allow for a direct calculation of the
full current-current correlation function, and that we need
not evaluate the full vertex function F at any stage of the
calculation.

(a)

(b)

FIG. 1. (a) Illustration of the type of self-energy diagrams that
are captured by isolated cluster and embedded cluster (in
particular cellular DMFT), and the respective difference in the
Brillouin zone (discrete vs continuous). (b) Separation of a
susceptibility into the bubble and the vertex corrections part.
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In the isolated cluster calculations, one faces several
finite-size effects stemming from the finite range of the bare
electronic propagator [41,42]. Most importantly, this not
only limits the range of electronic correlations, but also
affects the diagrammatic content of short range correla-
tions: diagrams with distant interaction vertices are not
captured (Fig. 1). One may see this equivalently in the k
space as a discretization of the Brillouin zone, which affects
the internal momentum summations in all self-energy and
full vertex diagrams.
Methods B.—We solve the embedded clusters of size

2 × 1 and 2 × 2 within the cellular DMFT (CDMFT)
scheme [45] and the 4 × 4 cluster within the dynamical
cluster approximation (DCA) scheme [46], both using
CTINT. (Unlike the isolated cluster case, the bare propa-
gator entering CTINT here takes into account the effective
medium.) The single-site DMFT calculations (cluster size
Nc ¼ 1) are done using both the CTINT and the approx-
imative real-frequency numerical renormalization group
method as impurity solvers.
In CDMFT, an electron can travel infinitely far between

two scatterings, but a self-energy insertion in the corre-
sponding diagrammatic expansion can only be of limited
range (see Fig. 1). In DCA, the approximation is made in
reciprocal space and amounts to allowing the electron to
visit k states otherwise not present in the finite cluster [24].

Results.—The top panels of Fig. 2 show the temperature
dependence of χc for several values of doping p ¼ 1 − hni.
One sees that, in the high-temperature regime T ≳ 0.3D,
the results of different methods (solid curves) all agree and
tend toward the atomic limit, as expected for a thermody-
namic quantity.
At lower temperatures, the nonlocal correlations show

up. Away from half-filling, FTLM and DCAyield a charge
susceptibility that increases with lowering temperature, yet
in DMFT, it saturates, instead. The enhancement of charge
susceptibility at low T comes from the antiferromagnetic
fluctuations [7]. The difference between the DCA and the
DMFT is used to characterize the importance of nonlocal
correlations (green shading). They also manifest them-
selves in the growth of nonlocal self-energy at low T (thin
dashed-dotted lines). The DCA and the FTLM results do
not completely coincide; the difference (pink shading)
comes from the longer-distance quantum fluctuations.
The discretization of the Brillouin zone in FTLM can be
somewhat ameliorated by the twisted-boundary conditions
(TBC) scheme [47]. As expected, TBC is closer to DCA
(black line), but one needs a better method to capture the
full effect of longer-range processes.
We have also separately evaluated the bubble contribu-

tion χdisc to χc (dashed lines) and observe that it is
substantially larger than the full result χc.

FIG. 2. Charge susceptibility (upper) and dc resistivity (lower) as a function of temperature, at different levels of doping.
The color between the curves denotes the physical origin of the difference. Dashed curves denote just the bubble contribution, solid lines
the full result.
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The bottom panels of Fig. 2 show the temperature
dependence of resistivity ρdc as calculated from the bubble
term in the DMFT (dashed line) and the full result from
FTLM (solid line). Strikingly, even in the temperature
range T ≳ 0.3D where the behavior of χc collapsed to that
of the atomic limit, the DMFT and FTLM are shown to
yield significantly different results with a lower value of
resistivity found in the FTLM.
To understand the origin of this difference, we take a

closer look at the data at T ¼ 0.5, p ¼ 0.1 that we show in
Fig. 3. In panel (a) we compare the self-energies found in
the DMFT, CDMFT 2 × 1, and the CTINT calculation for
the isolated 4 × 4 and 8 × 8 clusters. Not only is the nearest
neighbor self-energy (top) found to be 2 orders of magni-
tude smaller than the local one (bottom), but also the local
parts of the self-energies show excellent agreement. Thus,
neither nonlocal correlations (neglected in DMFT) nor
long-range processes (neglected in 4 × 4) play an important
role for the self-energy at this temperature.
Might long-range processes play a more important

role for the conductivity? One can readily investigate the
role of long-range processes for the bubble part of the
conductivity. This is done by calculating the conductivity
in the DMFT formulated for the 4 × 4 lattice, which
amounts to discretizing the Brillouin zone [in both the

self-consistency condition and internal bubble summation,
Fig. 1(b)]. Figure 3(b) compares the optical conductivity
obtained in this way (denoted by DMFT 4 × 4) to the
infinite lattice DMFT result and to the FTLM one. The
DMFT and the DMFT 4 × 4 are close: the long-range
processes clearly do not account for the discrepancy
between the DMFT and the FTLM either. Therefore, the
difference between the DMFT and FTLM conductivities
mostly comes from the vertex corrections.
To further verify this result, we have also evaluated the

current-current correlation functionΛðiνnÞ in CTINT 4 × 4,
and deduced the connected part by ΛconnðiνnÞ ¼ ΛðiνnÞ−
ΛdiscðiνnÞ, which is shown by the blue squares in Fig. 3(c).
These points fall on the blue line which is obtained by the
Hilbert transform to the imaginary axis [Eq. (3)] of the
difference in σðωÞ between the FTLM and the DMFT 4 × 4

[see Supplemental Material (SM) [48] for details and other
p, T]. Note that the magnitude of Λconn at the Matsubara
frequencies is rather small, consistent with the Ward
identity Λconnðiν ¼ 0Þ ∼P

kvk
P

iωn
G2

kðiωnÞ∂kxΣkðiωnÞ,
that associates Λconnðiν0Þ with ∂kxΣk (see SM [48] for
further discussion). The conductivity is, however, deter-
mined by the slope, −∂νReΛðiνÞjν¼0þ ¼ σðω ¼ 0Þ ¼ σdc,
and the contribution from Λconn is not small but comparable
to the bubble term. The slope of the red line which
corresponds to the difference between the DMFT 4 × 4

and DMFT is small, reflecting the practically negligible
finite-size effects in the bubble.
The shape of Λconn is difficult to reconstruct with

analytical continuation from noisy data at the Matsubara
frequencies (see SM [48]), which we circumvented by
using FTML.
Might the impact of vertex corrections change if larger

systems are considered? The added longer distance com-
ponents of Λconn

r could be sizeable, and even the short
distance components might change due to improved dia-
grammatic content captured by the bigger cluster. We have
performed the CTINT 8 × 8 computation to address this
question. In Fig. 3(c), we compare ΛconnðiνnÞ between
4 × 4 and 8 × 8 clusters (blue squares and black stars) and
observe that they are equal within the statistical error bars
(about the size of the square symbol). As for the longer
distance components, we analyze the vertex corrections
term as a function of real-space vector Λconn

r ðiνnÞ and
present the results in Fig. 3(d). Indeed, the values drop
rapidly with distance, and the range of Λconn is clearly
captured by the 4 × 4 cluster. Furthermore, the difference in
the full Λ between 4 × 4 and 8 × 8 clusters (purple crosses)
appears to coincide with the finite size effects in the
bubble (red line and dots) obtained entirely independently
with DMFT.
Small finite-size effects are also indicated from a

comparison of the frequency moments of FTLM σðωÞ in
the high-T limit with the exact values from Ref. [8], where

(a) (b)

(c) (d)

FIG. 3. All panels: p ¼ 0.1, T ¼ 0.5D. a) Benchmark of self-
energy and inspection of its leading non-local component. b)
Comparison of the optical conductivity between various methods.
c) See text. d) Real-space resolution of the vertex corrections
along two spatial directions (CTINT 8 × 8 result).
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we find an excellent agreement within ≲0.2% (see
SM [48]).
It is important to note that apart from reducing the dc

resistivity, the vertex corrections have a characteristic effect
on the frequency dependence of optical conductivity [see
Fig. 3(b) and SM [48] ]. The high-frequency peak in
σðωÞ obtained from DMFT is centered at precisely
ω ¼ U ¼ 2.5D. This peak describes single-particle tran-
sitions between the Hubbard bands. The inclusion of
vertex corrections brings about multiparticle excitations
which move this peak towards lower frequencies, as
noted previously in a slightly different context (see
Refs. [49–51]).
Conclusions.—In the high-temperature T ≳ t, (doped)

Mott insulator regime of the Hubbard model, the single-
particle self-energy is almost local, yet the vertex correc-
tions to dc resistivity persist. This finding applies to the
optical lattice investigation in Ref. [10], and explains why
the DMFT results disagree with the experiment. On the
other hand, we demonstrate that the long-distance quantum
fluctuations play a negligible role, and thus, the 4 × 4
isolated cluster becomes representative of the thermody-
namic limit. Therefore, the corresponding FTLM result is
close to exact, and is an important benchmark for the
experiment in Ref. [10] and future cold atoms experiments.
We cannot access, with the same confidence, the regime

below T ∼ t. In principle, determinantal quantum
Monte Carlo algorithms allow access to larger lattices
and, thus, lower temperatures (see Ref. [8]), but the
analytical continuation presents a possible source of sys-
tematic error which is difficult to detect and estimate (see
SM [48] for a detailed analysis using the implementation of
the maximum entropy method taken from Ref. [52]). Our
results highlight the need for developing real-frequency
diagrammatic methods, like the one proposed recently
in Ref. [53].
Finally, our results suggest that proper account of the

vertex corrections is needed at all temperatures. The
discrepancies between the experimental observations and
the DMFT, such as those observed in the case of hcp-Fe
[54] or in Sr2RuO4 [55] should not be interpreted only in
terms of nonlocal correlations. Very recently [36], this
conclusion has been shown to be valid even at much weaker
coupling and in various other models.
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