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PACS numbers:

SELF-ENERGY SCALING

In a Fermi liquid, ImΣ(ω, T ) ∝
[
ω2 + (πT )2

]
and

therefore the self-energy obeys the following scaling in
ω/T :

−DImΣ

T 2
= A

[
π2 + (ω/T )2

]
. (1)

In Fig. 1, we show −ImΣ(ω, T )/T 2 as a function of ω/T
for different temperatures. As the temperature is lowered
below TFL ≈ 0.01D, the curves collapse on a parabola,
confirming the expected Fermi-liquid scaling law. Find-
ing such a scaling is actually a stringent test on the nu-
merical data. Very precise quantum Monte Carlo data
(analytically continued with Padé approximants) and a
strict control of the chemical potential were needed to
obtain these results.

As the temperature is raised, the positive-frequency
side quickly deviates from the scaling form, revealing a
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FIG. 1: The self energy scaling as ω/T for the doped Hubbard
model considered in the main text (Bethe lattice, U = 4D,
doping δ = 0.2). At low temperatures self energy follows
Eq. 1. A is found to be close to Z−2 ∼ δ−2. (For doping 0.2,
Z = 0.22.)

particle-hole asymmetry already for temperatures above
T/D = 0.005. The deviations appear at a scale ω+ ≈
πTFL. On the negative-frequency side the self-energy fol-
lows the quadratic behavior much more robustly and de-
viates from the scaling function only at about T/D =
0.02. Notice that the corrections on the ω > 0 side grow
linearly with temperature. This leads to a Seebeck coef-
ficient which is linear in T at low temperatures, but with
an enhanced slope as compared to the result one would
get if these corrections were neglected.

The transport probes an energy window of a few (say
from -5 to 5) kBT . In this energy window the self-energy
starts to deviate appreciably at T/D = 0.01. This is
where the resistivity (within the precision of our data)
visually departs from the T 2 law.

TEMPERATURE EVOLUTION OF
MOMENTUM-RESOLVED SPECTRA

In Fig. 2 we plot the temperature evolution of the
momentum-resolved spectra using a color-map where
bright (dark) colors indicate high (low) values of Ak(ω).

At low temperatures, the data display two peaks corre-
sponding to: the lower Hubbard band (LHB) which dis-
perses around ωLHB ∼ −µ0 and the quasiparticle peak
(QP) in the vicinity of ω ∼ 0. µ0 is the effective chemical
potential at T = 0. The upper Hubbard band (UHB)
centered at the energy ωUHB ∼ U − µ0 lies above the
energy range displayed in the plot.

The lowest temperature data T/D = 0.0025 show a
very sharp QP peak around ω = 0, which is rapidly
broadened as the frequency is increased. At very small
frequencies, the slope of the dispersion is found to be
approximately 5 times smaller than the bare one, as
dictated by Z ≈ 0.2. On the negative-frequency side
this holds almost until the bottom of the band. On the
positive-frequency side, instead, the kink at ω+ is rapidly
encountered. Above this kink, the slope of the band dis-
persion increases to about half the bare dispersion slope.
The LHB, seen clearly for occupied states k < kF , dis-
perses at a slope close to that of the bare dispersion.
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FIG. 2: Contour map of momentum-resolved spectra A(εk, ω) at various temperatures for the same parameters as the data in
the main text: doping δ = 0.2 and U/D = 4.0.

As the temperature is increased, the QP band broad-
ens and becomes more dispersing. It becomes therefore
progressively more difficult to resolve it from the LHB
band. Nevertheless, for temperatures well above TFL and
T∗ (four leftmost panels) one can still clearly distinguish
the QP band from the LHB. The maximum of the spectra
is also indicated (lines). This maximum has a discontinu-
ity at a point where the maximal value in the QP band
becomes larger than the maximal value reached in the
LHB band. Dashed and solid lines are used to denote the
maximum in the QP and LHB band, respectively. Above
T/D = 0.2 the maximal value does not have a disconti-
nuity anymore and the signature of the quasiparticles is
only visible as a kink in the dispersion. This marks the
onset of the bad-metal regime. Note that T/D = 0.2 = δ
corresponds to the Brinkman-Rice scale. At the highest
temperature T/D = 1.0 the kink is not seen anymore.

The QP band crosses the Fermi energy at different
momenta as the temperature increases. Identifying the
Fermi surface with the momenta at which the spectral
intensity of the QP band is maximal leads to the conclu-
sion that the Fermi volume inflates as the temperature is

increased. Note that the number of particles is fixed so
that with this identification of the Fermi surface the Lut-
tinger theorem is only obeyed at very low temperatures.

To elaborate on this, we plot on Fig. 3 the momentum-
distribution curve at ω = 0,

A(εk, 0) =
1

π

−ImΣ(0, T )

(µ− ReΣ(0, T )− εk)2 + (ImΣ(0, T ))2
(2)

for several temperatures. This spectral function has the
shape of a Lorentzian centered at µ − ReΣ(0, T ) − εk
with a width ImΣ(0, T ). At very low temperatures a
sharp peak lies at the chemical potential, fulfilling the
Luttinger theorem. When the temperature increases, the
peak moves to higher momenta.

An alternative way to track this change is to look at
the renormalized chemical potential µeff = µ−ReΣ(0, T )
as a function of the temperature as shown in Fig. 4. In
the Fermi-liquid regime, µeff essentially follows the non-
interacting chemical potential µ0 (shown with a dashed
line). At higher temperatures µeff rapidly increases.

An important lesson here is that observing a well-
defined QP peak does not imply that the system has
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FIG. 3: The evolution of momentum-distribution curves at
the Fermi level Eq. (2).
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FIG. 4: Temperature dependence of µeff = µ(T ) − ReΣ(ω =
0, T ). The noninteracting chemical potential µ0 is shown by
a dashed line.

reached the Fermi liquid regime. As Fig. 4 shows,
the chemical potential in this intermediate-temperature
metal can be quite far from the Fermi energy, despite a
signature of well-distinguishable resilient QPs.

THERMOPOWER AT HIGH TEMPERATURES
AND COMPARISON TO APPROXIMATE

FORMULAS

In Fig. 5 we show the Seebeck coefficient over a larger
temperature window. The Seebeck coefficient calculated

using the Kubo formula is plotted with a thick line
and compared to various estimates. The Kelvin formula
∂µ/∂T (using µ calculated within DMFT) overestimates
the magnitude of the thermopower in the low-T regime
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FIG. 5: Seebeck coefficient calculated using the exact Kubo
formula (thick black line) compared to the approximate
Kelvin formula (red line) and Heikes formula (green line
and green symbols). The atomic Kelvin estimate (dotted)
and Heikes estimate (thick dashed) interpolate between the
asymptotic U →∞ and U → 0 Heikes values.

but is a good approximation of the exact result above
T∗ ≈ 0.08D. For comparison, we also plot the corre-
sponding atomic estimate using the Kelvin formula, but
using the µ obtained in the atomic limit. We note that
the two expressions essentially match above T/D = 1.
Note that the Kubo result starts to deviate significantly
from the atomic estimate only when entering the resilient
QP regime.

Finally, we plot Heikes estimates. The results ob-
tained from the DMFT chemical potential using NRG
and continuous-time interaction expansion Monte Carlo
(CTINT) are plotted (full green line and symbols).
Heikes formula is found to approximate the thermopower
worse than the Kelvin formula. For comparison, also the
atomic Heikes estimates (thick dashed) as well as the
asymptotic U → 0 and U → ∞ Heikes values [1] (hori-
zontal lines) are shown.

[1] P. M. Chaikin and G. Beni, Phys. Rev. B 13, 647 (1976)


