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Aharonov-Bohm and Aharonov-Casher effects for local and nonlocal Cooper pairs
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We study combined interference effects due to the Aharonov-Bohm (AB) and Aharonov-Casher (AC) phases
in a Josephson supercurrent of local and nonlocal (split) Cooper pairs. We analyze a junction between two
superconductors interconnected through a normal-state nanostructure with either (i) a ring, where single-electron
interference is possible, or (ii) two parallel nanowires, where the single-electron interference can be absent, but
the cross Andreev reflection can occur. In the low-transmission regime in both geometries the AB and AC effects
can be related to only local or nonlocal Cooper pair transport, respectively.
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I. INTRODUCTION

Substantial progress has been made in recent years in the
creation of spatially separated spin-entangled electrons in solid
state by Cooper pair splitting [1-7]. Such entangled states
are a necessary ingredient of quantum communication and
computing [8]. It has been also demonstrated that a Josephson
supercurrent with unusual properties can be generated from
nonlocal split Cooper pairs [9], as pointed out by Wang and
Hu [10] in regard to the Aharonov-Bohm (AB) effect. This
new Josephson current requires further studies, in particular of
its interference properties.

One of the best-known interference phenomena is the
Aharonov-Bohm (AB) effect [11-14], where the phase of a
charged particle is affected by magnetic flux. Dual to the AB
phenomenon is the Aharonov-Casher (AC) effect [15-17],
in which electric field acts on the phase of magnetic
moment.

The AC effect for electrons in solid state can be caused
for instance by the Rashba spin-orbit interaction, observed
in mesoscopic rings [18,19], or in the Datta-Das transistor
[20,21], where oscillations of conductance as a function of
electric field occur due to the Rashba phase ¢ . Such interac-
tion is of major importance for spintronics, because its strength
can be controlled by an external gate voltage.

In s-wave superconductors, the Cooper pairs are in the
singlet state, and thus have no net magnetic moment (spin
S = 0). Therefore, it was recently postulated that there should
be no AC effect for such a composite object. This conjecture
can be also linked to the fact that the two spin components (o =
+1 for spin 1, |) of a Cooper pair in a quasi-1D quantum
wire have opposite Rashba phases o ¢ [22-25], which cancel
each other and suppress the AC effect. Accordingly, it has
been shown in a number of papers that to achieve modifi-
cation of the Josephson current by the spin-orbit interaction
one needs breaking of the time-reversal symmetry, e.g., by
a magnetic-field-induced Zeeman splitting or by magnetic
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exchange interactions [26—38]. We show that the desired spin
control without any magnetic field can be achieved for split
nonlocal Cooper pairs.

As a Cooper pair is composed of two electrons—each of
them having a magnetic moment related toits spin (S = 1/2)—
one may raise a question whether it is possible to induce the
AC effect for each electron of a pair separately so that the
two contributions do not compensate each other. Our answer
to this question is positive, but only if a Cooper pair is split
and nonlocally preserves its entangled singlet state, while each
electron of the pair experiences a different Rashba phase. The
effect does not depend on the detailed geometry of the device
as we prove by considering different cases. In all we find
that at low transmission, 7 < 1, the AB and AC effects are
linked to local [10] and split nonlocal Cooper pair transport,
respectively. This explains why the AC effect has not been
found for local Cooper pairs without breaking the time-reversal
symmetry in Refs. [26-38], and opens the possibility to control
the two components of the Josephson current independently by
the respective phases.

Below we consider two different setups, with two supercon-
ducting electrodes linked by: (i) a normal 1D ring, in which
single-electron interference is possible [Fig. 1(a)]; or (ii) two
parallel nanowires (2NW) [Fig. 1(b)], where single-electron
interference can be absent, but cross Andreev reflection (CAR)
is possible (the distance between the nanowires is comparable
to or smaller than the Cooper pair size £).

II. JUNCTION WITH RING

In the first case to be considered the superconducting leads
are connected by a 1D ring formed by two Y junctions and two
arms (up and down). We assume that the size L of the system
is smaller than the phase coherence length /s, L < l4, which
implies the possibility of single electron quantum interference
in a normal state.

©2018 American Physical Society
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FIG. 1. Superconducting leads connected by a semiconducting
link in the form of (a) a 1D ring or (b) two nanowires. Electrons
flowing in the system acquire phases ¢ap and o ¢gy/q related to the
external magnetic field flux ® and the Rashba spin-orbit interaction,
respectively. In both systems local (i) and nonlocal (ii) Cooper pair
transport is possible.

The Josephson current for kg7 — 0 and L < & can be
calculated from the equation [39,40]

2e 0
1(p) = gg@ 3 Ea(p), (M

where the sum runs over all negative Andreev bound states en-
ergies, which can be calculated from Beenakker’s determinant
equation, using scattering matrix formalism [39,41,42]:

Det(1 — ozzrj:SerASh) =0, ry = (eoz e—Oﬁ;)’ )

where o = exp [—i arccos (E/A]), r4 is the Andreev reflection
matrix, with ¢ denoting the superconducting phase difference,
and Sy, is scattering matrix for electrons/holes.

The ring can be characterized by a scattering matrix (S ma-
trix) S. (see Appendix A for details), with the parameter ¢,
describing the symmetric transmission between the incoming
electrode and each arm of the ring: 0 < #; < 1/ V2, and where
phase dependent transmission amplitudes of the up (down) arm
are given by

. B
Tuo/ds = €XP | i| Xu/d — O Prusa F > )|

. )
tl/l(r/do' = exp |:l (Xu/d + o¢ruja £ %)}, (3)

where the subscript u (d) indicates the up (down) arm and
the prime denotes the transmission in opposite direction. Here
Xu/d denote the respective dynamic phases [43] that have the
same sign for all cases, while o ¢ry/q are the spin-dependent
Rashba phases, and ¢pag = 7 /Py is the AB phase, with &y =
7 hc/e, which both switch signs while changing direction and
the AB phase has the opposite sign for two arms [44]. In further

calculations we assume for simplicity x, = x4 = 7/2; this
does not affect the qualitative validity of the conclusions. We
consider the short SNS junction limit, L < &y = hivg/A(0),in
which the scattering matrix S is independent of energy [39].
The hole S matrix Sy, is related to the electron S matrix S,
which is now spin dependent, as S, = TS. T, where T =
ioy K, oy, denotes the Pauli matrix acting on the spin degree of
freedom, and K is the operator of complex conjugation. This
implies Sps = S35 [45].

By solving Eq. (2) we obtain the bound state energy, which
is spin independent for the particle-hole symmetry:

£ iA\/l—|—,/R¢R¢+sgn(91),/TTT¢cos<p
i: 9
2

1
Q= E[COS @AB + €08 (Pru — PrR)], 4)

where R, = 1 — T,,and 7, is the spin-dependent transmission
of the ring:

B 8r4(1+ ©,)
[B-32+5+(1-12—7)0,]"
Oy = cos [Ppap + 0 (Pru — PrRA)], (%)

with7; = (1 — 2¢7)"/2. The transmission T, in Eq. (5) depends
on the AB and AC phases through the term ®,, which is
spin dependent only when both ¢ap # 0 and ¢ry, — ¢Pra # 0.
Equation (4) implies that the Andreev bound state energy
cannot be expressed only in terms of normal transmission
T, T,.

By substituting ¢pap = 0 [46] or ¢ry — ¢Pra = 0 to Eq. (4)
and putting Ty, = T\, = Ty we obtain the well-known result for
the Andreev bound state energy [39]:

Ei =+A/1 — Tysin’(p/2). (6)

For a junction with ring, at low transmission 7, < 1 the
Josephson current has the form

A A
I(p) = ez—hsgn(Ql)\/ﬁsinqo = ez—htfﬂl sing.  (7)

The current (7) has two components, one dependent on the
dap phase and the other on the Rashba phase ¢r, — ¢ra [see
Eq. (4) for ©2;]. In the low-transmission regime 7, < 1, this
dependence can be related to the way Cooper pairs flow through
the system. If both electrons of a Cooper pair (in an |S) state)
travel in the same arm of the ring, their Rashba phases cancel
due to their opposite spins, and the Josephson current only
depends on the AB phase. If a Cooper pair is split and the
constituent electrons travel in different arms of the ring, the
AB phases of the electrons cancel, being opposite in the two
arms; consequently, this component of the Josephson current
only depends on the Rashba phase, thus we can observe the
AC effect. In the higher-transmission regime more complex
trajectories are available, which prevents the separation of the
two components.

III. JUNCTION WITH TWO NANOWIRES

We now show that the discussed effects do not depend
on the geometry of the system. We consider two nanowires
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connecting two superconducting electrodes [Fig. 1(b)] spaced
by adistance W smaller than the size & of the Cooper pair W <
&, which can be larger than /4 in dirty superconductors. In such
asystem the CAR effect is possible even though there can be no
single-electron interference in the normal state, especially at
higher temperatures close to 7., since [, oc T~'/2, while & ~ &,
and only slightly varies with temperature [47,48]. The CAR
probability is a function of both & and the Fermi wavelength A
[1,49,50], nonetheless, the CAR in parallel nanowires coupled
to a single superconductor was observed experimentally at a
distance W between nanowires from 100 to 800 nm [51-53].
The S matrix S, of this 2NW system (see Appendix B for
details) is a combination of the S-matrices Sy,/4, 0Of each
nanowire, where o /do = tuo/do AN Ty, 4, = 1ol g, are the
transmission amplitudes through a single [up (u) or down (d)]
wire, with the parameter #, ranging from 0 to 1,0 < #, < 1.
We assume that the wires are symmetric in the transmission
parameter t, [54]. In this system, when an electron (hole) enters
the superconductor, a hole (electron) can be reflected to any of
the two available wires. This two-nanowire Andreev reflection
can be modeled as follows:

e O), o (VI vt g
0 r¥ ) 2 yel% —me’% ’

a
where y € (0,1) describes the mixing amplitude between the
two wires. The solution of Eq. (2) yields four Andreev bound

state energies:
2 — T(l — Qcos@ +nsing,/1 — Q%)

E,p = +A 2 , 9
where T = Tys/d0 7o o = t22 is the spin- and phase-
independent transmission of a single wire, n = %1, and

Q = (1 —y*)cos gap + ¥ cos (fru — ¢ra).  (10)

Inextreme cases 2y = cos ¢pap fory = 0and 2, = cos(¢ry —
¢ra) fory = 1.

For low transmission T < 1, the Josephson current is given
by

eA .
I(p) = 7T522 sin @. (11)

Asin the ring system, also here the current has two components
related to different modes of electron pair flow (split or unsplit)
through the system. Comparing Eqgs. (7) and (11), we find that
in the case of symmetric wire mixing, y = 1/ «/Z the currents
in the 2NW system and the ring system considered above have
the same phase dependence in the low-transmission regime,
T, < 1. When y # 1/4/2, the 2NW system has different
amplitudes of AB and AC oscillations, as indicated by Eq. (10)
and illustrated by Fig. 2. This is in contrast to the junction with
ring, in which the amplitudes are equal. In the extreme cases,
for y = 0 (no mixing), Andreev bound states energies are given
by

) @ + ndap

Eps = :I:A\/l — Tsin® ===, (12)

which case
impossible

backscattering to
and full splitting

and for
the same

y =1, in
wire is

(e}
I. [eAt,'/h]

-0.5

4r

FIG. 2. Critical Josephson current in the 2NW system as a
function of the AB and AC phases for different wire mixing:
@y =020y=04©@y=06dy=1/VET <1

occurs:

2 ¢ + 1o (Pru — Pra)
> .

These specific situations can be regarded as the flow of either
unsplit or split Cooper pair electrons, respectively, with the
consequent dependence on only one phase (AB or AC).

As we increase the junction transmission, differences be-
tween these two systems become apparent also for y = 1/+/2.
Figure 3 shows the Josephson critical current I¢ plotted versus

Epy = j:A\/l — Tsin (13)

1.0

1. [2Ae/A]

1. [2Ae/h]

/2 s
¢Ru_ ¢Rd

3r/2 2

FIG. 3. Critical Josephson current /¢ in ring (solid line) and 2NW
(dashed line) junctions versus Rashba phase ¢r, — ¢ry, for (a) t =
12 = 26/ + 1), t € {0.7,0.9,0.95,0.995,1}, ¢pap = 0; (b) t =
Loas = 1{%.5, 37” ,m}; see Figs. 4(c) and 4(d) for section along dashed
line. Ring curves are multiplied by factor 2 since the 2NW system
consists effectively of two transport channels, while the ring has only
one channel; y = 1/+/2.
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FIG. 4. Josephson critical current /- versus AB phase ¢ap and
Rashba phase ¢r, — ¢ra for + = 0.7 (a) and (b) and 1 (c) and (d) in
junction with ring (a) and (c) and in 2NW system (b) and (d). Scaling:
(a) x20, (b) x10, and (c) x2.

Pru — Pra for pap = 0 and different values of parameter ¢ =
12 = 26,/ + 1) (0 < t < 1)[55]. InFig. 3(a) forr <« 1
the characteristics are similar in the two systems. A significant
difference only occurs for large transmission, ¢ & 1. The same
is observed in the current characteristics plotted for different
AB phases ¢ap with ¢ry — ¢ra = 0.

Another difference between the Josephson currents in these
two systems can be seen for # = 1 when both phases are
nonzero [Figs. 3(b) and 4]. In the 2NW system the current
shows a steplike transition between positive and negative
values [see Fig. 3(b)]. This is related to the fact that for the
ring the transmission 7, depends on both AC and AB phases,
therefore for a large range of parameters 7, < 1. For the
2NW case the transmission of each nanowire does not depends
on both phases. As a result the perfect transmission can be
achieved, which make steplike behavior possible.

IV. TRANSMISSION AMPLITUDE ASYMMETRY

In the previous section, for simplicity, we consider a
symmetric two nanowire system, however, experimental fab-
rication of junction with two identically connected nanowires
can be difficult. In this section we prove that asymmetry in the
transmission of two nanowires #, does not affect our main con-
clusions. In our model we can introduce different amplitudes
for up and down nanowire, t,, 7# f»4 in S matrix Eq. (B1). As
a result the Josephson current for 7 < 1 has the form

1(90) =Ilocal((p) + Inonlocal(@)v (14)

eA

570 yH[13, sin (¢ + Pap) + 134 sin (¢ — Pa)],

as)

Local =

eA 5 .
Tnontocal = 7t2ut2dy cos (pry — @ra)sing.  (16)

The above equations confirm that transmission amplitude
asymmetry does not change our general conclusion. The
Josephson current, in low transmission regime, has two

components as before: local—dependent only on the ¢ap
phase, which has two contributions from Cooper pairs flowing
through up and down nanowire (c t22u sa)» and the nonlocal
component—dependent only on the Rashba phase ¢r, — ¢ra
(X faytaa).

V. CONCLUSIONS

We have demonstrated that the AC effect for Josephson
supercurrent is possible even in systems with unbroken time-
reversal symmetry, but only for nonlocal split Cooper pairs
which can be free from the AB effect. On the other hand, for
local Cooper pairs the AC effect does not occur, while the
AB effect has the standard form. In the higher transmission
regime, however, the local and nonlocal components will be
mixed up by higher-order processes. We have analyzed these
effects in two different systems to show that discussed behavior
is geometry independent. One can expect similar effects in
Josephson junction with two parallel nanowires with aquantum
dot inserted in each nanowire [56].

In InAs and InSb nanowires a large spin-orbit coupling
was observed with effective spin-orbit length /i, &~ 200 nm
and a Rashba parameter n = 0.2 eV A [24,57-59]. Recent
experiment by Baba et al. [60] showed the possibility of
producing two Rashba parallel InAs nanowires system with
quantum dots (the length ~250 nm and the distance between
nanowires ~100 nm). Experimental work by Szombati et al.
[61] also shows possibility of forming a Josephson junction
with ~200 nm long InSb Rashba nanowire with quantum
dot, with spin-orbit length [, & 350 nm, whereas Gazibegovic
et al. [62] show formation of InSb nanowire ‘“hashtags”
(rectangular loops) that can be connected to superconducting
electrodes. The above examples of experimental work indicate
that the proposed effects are possible to measure using present
day technology.
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APPENDIX A: S MATRIX FOR RING

In the first considered case the superconducting leads are
connected by a 1D ring formed by two Y junctions and two
arms (up and down). Each part of the ring can be characterized
by a scattering matrix (S matrix). The leftand right Y junctions,
with symmetric outputs, can be modeled by the following S
matrices [63]:

f 1 1 141
S=|n —30+h) 30-hH) |,

L os(l—=f)  —3(1+h)

~

(AD)

~
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—la+m) fa-f) n
S, = %(1 — fl) —%(1 + fl) n| (A2)
n 1] f

where 71 = (1 — 21‘12)1/ 2 and the parameter ¢; describes the
transmission between the incoming electrode and each arm
of the ring: 0 < 7; < 1/+/2. The central region of the ring,
where an electron acquires a spin-dependent phase shift, can
be described by two S-matrices:

Scua/do = ( /4 )7 (A3)
tua/da 0
. PaB
fuo/de = €XP [ i| Xu/d — O Pruja F > | (A4)

J

26 + (1 — 1] — W) tuotlyy + thglao) — (1 — 17 + 1) (tuothy + taotly) + 20 tustig tastly,

tio/ds = €XP [i (Xu/d + oPRruja £ %)}, (A5)
where the subscript u (d) indicates the up (down) arm, y,q are
the respective dynamic phases [43], o ¢ry,q the spin-dependent
Rashba phases, and ¢pap = 1P/ Py is the AB phase, with
@y = mhc/e. In our calculations we assume y, = xq = 7/2,
which corresponds to a particle-hole symmetry that simplifies
equations without loss of generality. The total scattering matrix
Se for electrons passing through the ring is a combination of
matrices Sy, S;, and Scyo/do:

/

Po,ring Tori

Sea,ring = orne ), (A6)
To,ring Po,ring

with

Doxing = ~ i , (A7)
TET 2= (= 1] = 1) tuotyy + lastiye) — (1 = 1 + 1)tuo g + Laotyy) + 20 tus Uy Lao Ly
L 417 (tuo + tao + (15 + 14y Muoldo) (A8)
o,ring = - - s
4— (141 (tyot]y + tggzg,d) — (1 = 1) (ol + Uiy tae) + 4Tttt Lo
r - 4'tl (t;w + t:ia — (tlw + td(f)t;wt:ia) (A9)
P A — (V1) oty + taotlyy) — (1= 1) (tuothy + Higlao) + AT tuo o o i
APPENDIX B: S MATRIX FOR TWO NANOWIRES
The S matrix Sesonw Of the two parallel nanowires (2NW) system for xu/q = /2 has the form
PINW T, 0
0 PINW 0 7
Seo,2NW = 86 , (B1)
uo P2NW
0 0 PINW

where ponw = \/1 — |Tuodo |

= \/ 11—z, Jdo |2; Tuo/do = hrluo/do ad T, o = bt), Jdo are the transmission amplitudes through

a single [up (u) or down (d)] wire, with the parameter #, ranging from0to 1,0 < 5, < 1.

All these S matrices fulfill the unitary condition STS = 1.
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