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We study how the non-Fermi-liquid nature of the overscreened multichannel Kondo impurity model affects the
response to a BCS pairing term that, in the absence of the impurity, opens a gap �. We find that the low-energy
spectrum in the limit � → 0 actually does not correspond to the spectrum strictly at � = 0. In particular, in the
two-channel Kondo model, the � → 0 ground state is an orbitally degenerate spin singlet, while it is an orbital
singlet with a residual spin degeneracy at � = 0. In addition, there are fractionalized spin-1/2 subgap excitations
whose energy in units of � tends toward a finite and universal value when � → 0, as if the universality of the
anomalous power-law exponents that characterize the overscreened Kondo effect turned into universal energy
ratios when the scale invariance is broken by � �= 0. This intriguing phenomenon can be explained by the
renormalization flow toward the overscreened fixed point and the gap cutting off the orthogonality catastrophe
singularities. We also find other non-Fermi-liquid features at finite �: the local density of states lacks coherence
peaks, the states in the continuum above the gap are unconventional, and the boundary entropy is a nonmonotonic
function of temperature. The persistent subgap excitations are characteristic of the non-Fermi-liquid fixed point
of the model, and thus depend on the impurity spin and the number of screening channels.
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I. INTRODUCTION

The density of states (DOS) ρ(ω) of a conventional BCS
s-wave superconductor has a gap � and coherence peaks above
it, ρ(ω) = ρ0Re ω/

√
ω2 − �2, where ρ0 is the normal-state

DOS. This remains true also in the presence of disorder and im-
purities that maintain time-reversal invariance [1]. By contrast,
magnetic impurities may induce additional states inside the gap
by binding Bogoliubov quasiparticles through the exchange
coupling J [2–6]. The bound-state energies depend on the
interplay of Kondo screening, the superconducting proximity
effect, and spin-orbit coupling [7–9], and they are measur-
able in hybrid superconductor-semiconductor nanostructures
[10–12] and adsorbed magnetic atoms or molecules [13–15].
In the limit of a small gap, � → 0, the subgap states induced
by impurities that are Kondo-screened below the Kondo
temperature TK (and hence effectively nonmagnetic) move
toward the gap edges and merge with the coherence peaks
[16–23], because the weak superconducting pairing (� � TK )
perturbs a system that was formerly in a local Fermi liquid (FL)
state [24]. The effect of the impurity on the bulk electrons is
thus fully accounted for by the quasiparticle scattering phase
shifts resulting from the Kondo effect (π/2 in the deep Kondo
limit) [25]. A similar scenario occurs in the case of underscreen
local moments, which have a residual local moment that is,
however, asymptotically decoupled from the rest of the system;
such systems are known as singular Fermi liquids [26,27], and
they occur when the number of screening channels k is lower
than twice the impurity spin, 2S.

There is, however, another class of quantum impurities
that are Kondo-overscreened because the number of screening
channels exceeds twice the impurity spin, k > 2S [28–33].
Such overcompensation has been experimentally demon-
strated for the two-channel Kondo model (k = 2, S = 1/2)
in artificial semiconductor quantum dot devices [34–39].
The resulting states are non-Fermi-liquids (NFLs) [29,40]
with excitation spectra that deviate significantly from the FL

paradigm, but they can still be described in terms of appropriate
boundary conformal field theories (CFTs) [41–46], and they
can be solved exactly using the Bethe ansatz [47–49]. When
a small gap is opened in the contacts of such systems, the
superconducting state thus emerges out of a non-Fermi-liquid.
Two related questions arise: (i) What is the nature of the
excitations forming the continuum above the gap? (ii) Can
the subgap states be interpreted as bound states of NFL
excitations?

In this work, the problem is studied using the numeri-
cal renormalization-group (NRG) technique [16,50–54] and
analytical arguments. For the two-channel Kondo (2CK)
model [55] in the limit � → 0, we find surprisingly that the
low-energy spectrum does not reproduce that at � = 0: the
ground state (GS) is a doubly degenerate spin singlet, while
two S = 1/2 subgap Shiba states become degenerate with a
universal dimensionless energy ratio

ε∗ ≡ E∗/� ≈ 0.5983. (1)

In other words, even in the � → 0 limit these bound states
do not merge with the continuum. The GS is connected with
the excitations at the rescaled energy 1/8 in the boundary
CFT of the � = 0 case, while the excited subgap states
emerge out of the energy 0 and 1/2 states [41,42,56–59].
The excitations above the gap have NFL degeneracies and
spacing, and there are no coherence peaks in the impurity DOS.
When the NFL regime is disrupted by breaking the channel
degeneracy [29,56,60–62], the subgap states do move toward
the gap edge, and the coherence peaks are restored when the
FL-NFL crossover scale T ∗ exceeds �.

II. MODEL

We consider the Hamiltonian H = ∑k
i=1 Ji si · S + Hi ,

where

Hi =
∑
kσ

εk c
†
i,kσ ci,kσ +

∑
k

(�c
†
i,k↑c

†
i,−k↓ + H.c.), (2)
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i.e., a k-channel Kondo model [29] with each channel
described by a BCS mean-field Hamiltonian with fixed �.
Ji is the exchange coupling, si is the spin density of channel-i
electrons at the position of the impurity, S is the impurity spin-S
operator, and finally c

†
i,kσ creates an electron in channel-i with

momentum k, spin σ , and energy εk. The continuum has a
flat DOS with half-bandwidth D, i.e., ρ0 = 1/2D. The Kondo
scale for small exchange coupling is TK ≈ exp(−1/ρ0Javg),
where Javg = ∑

i Ji/k [63]. If Ji are nonequal, there is another
relevant scale T ∗ that grows as a power law with the difference
between the two largest Ji [55]. For � = 0, the system has
NFL properties for T ∗ < T < TK and crosses over to a FL
GS for T < T ∗. For � �= 0, we use the NRG to compute the
finite-size excitation spectra, thermodynamic properties, and
the T -matrix spectral function (impurity DOS).

III. PERSISTENT SUBGAP STATES

A. Two-channel Kondo model

The discrete (subgap) part of the excitation spectrum for
the 2CK model with J1 = J2 = J is shown in Fig. 1(a) at a
constant gap � as a function of the dimensionless coupling
constant g = ρ0J . To better understand the origin of these
states, we introduce a simplified zero-bandwidth model where
each screening channel is represented by a single orbital fi

with pairing (�f
†
i↑f

†
i↓ + H.c.), and 2si = ∑

αβ f
†
iα σ αβ fiβ .

The lowest four eigenstates, shown in Fig. 1(b), are in
qualitative correspondence with those of the full model. The
even-parity S = 1/2 state represents a decoupled impurity
spin. (The parity refers to the channel inversion symmetry.)
This is the GS for low g and corresponds to the local-moment
phase at � > TK . Each spin-singlet state corresponds to the
impurity spin coupled into an S = 0 state to a singly occupied
orbital, the other orbital being instead in the configuration
(|0〉 − | ↑↓〉)/√2. There are evidently two such spin-singlet
states, depending on which orbital screens the impurity. This
is actually the doubly degenerate GS for intermediate values
of g. Finally, in the large-g limit the GS is an odd-parity
strong-coupling state: both orbitals are singly occupied and
coupled into an odd-parity spin-triplet configuration, which is
in turn coupled to the impurity into an S = 1/2 state.

The low-g and high-g limits are related through a duality
mapping that interchanges the parity of the S = 1/2 states,
and which also occurs in the � = 0 model [60,63]. At
g = g∗ ≈ 0.7, these states cross and thereby define the self-
dual point. This occurs at a particular value of the excitation
energy ε∗ defined in Eq. (1). This value is actually universal:
for any g, the two doublet levels converge in the � → 0 limit
toward the same value ε∗; see Fig. 1(c). In Fig. 2, we plot
the subgap S = 1/2 states as a function of the dimensionless
exchange coupling constant g = ρ0J for a range of values for
the gap �. All curves cross in the self-dual point at g∗ ≈ 0.7.
For values of J close to the self-dual point, where the Kondo
temperature is of a magnitude comparable to the bandwidth,
the universal limit is reached already at high values of �.

The self-dual point thus defines the universal nontrivial
fixed point of the theory in the small-gap limit, as well as
at � = 0. The approach toward this limit is a square-root
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FIG. 1. (a) Subgap many-particle states in the two-channel Kondo
(2CK) model with a fixed gap as a function of g = ρ0J . The energies
are given with respect to the ground-state energy. S is the total spin
quantum number of the many-particle state. The parity of states
(even and odd) refers to the channel inversion symmetry (channel
k = 1 maps into channel k = 2 and vice versa). There are two
spin-singlet “Kondo-screened” states where the spin forms a Kondo
cloud predominantly with one of the two channels and is essentially
decoupled from the other. There are two different spin-doublet states:
one where the impurity is decoupled from the channels, and another
where it strongly couples to the neighboring orbitals from the two
channels to form a three-site antiferromagnetic Heisenberg spin chain.
The point where these two states have equal excitation energy defines
the self-dual point at g = g∗. (b) Eigenstates in the zero-bandwidth
limit. (c) Approach toward the asymptotic universal spectrum in the
zero-gap limit: as � → 0, the doublet states do not merge with the
continuum as in Fermi-liquid systems, but they converge to a finite
E/� value that is characteristic of the non-Fermi-liquid fixed point.

function of �:

Eo,e/� ∼ ε∗ + co,e(g)�1/2. (3)

Magnetic anisotropy J⊥ �= Jz is irrelevant, as in the normal
state, and it does not affect the value of ε∗. We have also verified
that the presence or absence of the particle-hole symmetry
plays no role.
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FIG. 2. Subgap S = 1/2 many-particle states in the 2CK model
for a range of � forming a geometric sequence with ratio

√
10.

In Fig. 3 we show the finite-size excitation spectrum
(NRG flow diagram) as a function of the Wilson chain
length N , corresponding to the energy scale εN = �−N/2.
Specifically, Fig. 3(a) reports the energies scaled as ε =
E/εN , and it demonstrates the crossover from the local
moment to the 2CK NFL fixed point for N � 30, with char-
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FIG. 3. Renormalization flow diagram with different scalings of
the energy axis for the 2CK model. N is the iteration number and
� = 2 is the NRG discretization parameter.

acteristic fractional energies εN = 0,1/8,1/2,5/8,1, . . . and
degeneracies 2,4,10,12,26, . . ., respectively, that reflect the
peculiar SU(2)2 × SO(5) conformal field theory (CFT) that
describes the asymptotic behavior of the model at � =
0 [41,46,55]. We observe that a finite � lowers the SO(5)
symmetry down to SU(2) × U(1), which corresponds to an
SU(2)2 CFT times the Z2 orbifold of a compactified c = 1
CFT. The latter allows for a marginal boundary operator that
can split the SO(5) multiplets, for instance the degeneracy
4 of the 1/8 state into 4 → 2 + 2, or the degeneracy 10
of the 1/2 state into 10 → 2 + 6 + 2 (see Sec. VI). Such
splitting is already evident in Fig. 3(a) for 40 � N � 45.
However, for N � 45, the BCS gap exceeds εN and induces
flow toward a new fixed point, which is better characterized
by scaling the energies as E/�; see Fig. 3(b). The lowest
doublet of the split ε = 1/8 multiplet becomes the doubly
degenerate spin-singlet GS, while the ε = 0, S = 1/2 state and
the lowest S = 1/2 state of the split ε = 1/2 multiplet meet in
the S = 1/2 subgap doublet. The continuum of excitations
for E > �, which is dense close to the gap edge, is best
shown scaled as (E − �)/�−N ; Fig. 3(c). The energies are
spaced by the ratio of �, rather than �2 as in the gapped
single-channel FL case [23]. Such a progression results from
a combination of FL states with one channel having δ = 0
and the other δ = π/2 quasiparticle phase shift, as expected
for a GS where the Kondo effect is formed with one channel,
the other being decoupled. This does not imply, however, that
FL behavior is recovered. The degeneracy of states above the
gap is twice the number for a FL. More remarkably, when
the matrix elements are evaluated to compute the impurity
DOS, there are no coherence peaks in the � � TK limit (see
Sec. V).

B. Three-channel Kondo model

We now turn to the three-channel Kondo (3CK) models
with k = 3, which also have NFL ground states for 2S < k

[64–67]. The three-channel Kondo models with S = 1/2
and 1 exhibit cross-duality: the small-g limit of the S =
1/2 model corresponds to the large-g limit of the S = 1
model, and vice versa. This occurs because the overscreen-
ing of a spin-1/2 by three channels produces a spin-1
residual object, while overscreening of a spin-1 produces
a spin-1/2 residual object. Accordingly, the two models
share essentially the same intermediate-coupling NFL fixed
point, only shifted by one Wilson shell, i.e., the even and
odd system sizes are interchanged; for S = 1/2, the level
progression is 0,1/8,2/8,5/8,6/8,7/8, . . . with degeneracies
3,12,14,28,42,24 for odd lengths and 0,2/8,6/8,10/8, . . .

with degeneracies 2,6,46,90, . . . for even lengths (for both
small and large g), and vice versa for the S = 1 model. The
Kondo temperature peaks for g ∼ 1. For finite �, the even-odd
alternation no longer occurs, and the cross-duality becomes
more obvious. For g ∼ 1, the spin-singlet ground state is triply
degenerate, and there are two spin-doublet energy levels, one
nondegenerate and one triply degenerate, again with universal
energy ratios:

ε∗
1 ≡ E∗

1/� ≈ 0.19, ε∗
3 ≡ E∗

3/� ≈ 0.72. (4)
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FIG. 4. Subgap many-particle states in the three-channel Kondo
(3CK) models with (a) S = 1/2 and (b) S = 1. Here � = 5.

A spin-triplet subgap state is also present and becomes the
ground state in the small-g limit of the S = 1 model and in the
large-g limit of the S = 1/2 model.

The subgap states can be interpreted in the zero-bandwidth
limit. For the S = 1/2 case, the following holds:

(i) The three spin-singlet states correspond to the Kondo
states formed between the impurity spin and one of the three
channels, the other two remaining decoupled.

(ii) The nondegenerate spin-doublet 1 is the local-moment
state.

(iii) The triply degenerate spin-doublet 3 is composed
of spin-1/2 “Heisenberg-chain” states formed between the
impurity spin and two of the neighboring orbitals, the third
channel being decoupled.

(iv) The spin-triplet is a “Heisenberg-star” state formed by
the impurity and all three orbitals.

For the S = 1 case, we find the following:
(a) The three spin-singlet states correspond to the exactly

screened Kondo states formed between the impurity spin and
two of the three channels, the third one remaining decoupled.

(b) The nondegenerate spin-doublet 1 is a “Heisenberg-
star” state formed between the impurity spin and the three
neighboring orbitals.

(c) The triply degenerate spin-doublets 3 can be thought of
as underscreened Kondo states where the impurity spin binds
to one of the neighboring orbitals, the other two channels
remaining decoupled.

(d) The spin-triplet is the local-moment state.
Because of the duality, the subgap spectra shown in Fig. 4

are essentially mirror images of each other. The nontrivial
regime corresponds to the flat parts for intermediate-coupling
g∗ ∼ 1. For any g, the � → 0 fixed point is the same. The
approach is now

E1,3/� ∼ ε∗
1,3 + c1,3�

1/3. (5)

Compared to the 2CK case, the two subgap states now
approach two different values, and the exponent is 1/3 rather
than 1/2.
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FIG. 5. Temperature dependence of (a) impurity magnetic sus-
ceptibility and (b) impurity entropy in the 2CK model.

IV. ANOMALOUS THERMODYNAMICS

The reshuffling of states when the gap opens leads to
peculiar thermodynamics. In Fig. 5, we plot the impurity
magnetic susceptibility, χimp, and impurity (boundary) entropy
simp for the two-channel Kondo model. For T � �, the
temperature dependence equals that of the � = 0 model: the
effective local moment goes to zero and the impurity entropy
reaches the ln 2/2 plateau. At T ∼ �, the effective degeneracy
of the impurity-generated states increases, leading to peaks in
both χimp and simp. The boundary entropy thus increases from
∼ ln 2/2 to ln 2. The g theorem [68] does not hold here because
� breaks the conformal invariance. Rising impurity entropy
at low temperatures is also found in other related impurity
models [69–71].

V. ABSENCE OF COHERENCE PEAKS

The FL properties are restored when the channel symmetry
in the overscreened Kondo models is broken [38,56,60–62,72].
The subgap spectrum, shown in Fig. 6(a) as a function of
�J = (J1 − J2)/2 for constant Javg such that TK � �, now
depends on the relative value of � and the NFL-FL crossover
scale T ∗. For small �J such that T ∗ � �, the subgap
spectrum is “NFL-like” with the S = 1/2 doublet close to
ε∗. As �J increases, the degeneracy between the spin-singlet
states is lifted. The Kondo state in the dominant channel
remains the GS, while the other Kondo state rapidly rises in
energy and enters the continuum. The subgap S = 1/2 doublet
asymptotically approaches the gap edge in the large-�J limit,
where T ∗ � �, and the spectrum becomes “FL-like” with
no subgap states (because � � TK ). The NFL-FL crossover
has a characteristic signature also in the impurity DOS; see
Fig. 6(b): with increasing �J , the δ peaks move toward the
continuum edges, and the spectral weight is transferred from
the subgap region into the continuum to form the coherence
peaks characteristic of the FL regime.
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VI. CFT APPROACH TO THE 2CK

In this section, we will briefly sketch how the conformal
field theory (CFT) can be applied to the two-channel Kondo
(2CK) model. We will make great use throughout of the results
in the book by Di Francesco, Mathieu, and Sénéchal [73]. We
will not pretend to be as rigorous and as detailed as they
are, we will just limit ourselves to listing some results whose
derivation can be obtained relatively easily through that book.
Therefore, in this section we implicitly assume that the reader
is somewhat familiar with the CFT.

First of all, we assume that the low-energy physics of
the model can be reproduced equally well by a simple
tight-binding model on a semi-infinite chain, with the impurity
spin sitting at the edge. The Hamiltonian thus reads

H = −t
∑
x�1

2∑
a=1

∑
σ

(c†x aσ cx+1 aσ + c
†
x+1 aσ cx aσ )

−�
∑
x�1

2∑
a=1

(c†x a↑c
†
x a↓ + cx a↓cx a↑)

+ J

2∑
a=1

∑
αβ

S · c
†
1 aα Sαβ c1 aβ (6)

≡ H0(�) + HKondo. (7)

To identify in a simple way the symmetries of the
Hamiltonian, it is convenient to perform the unitary

transformation

cx a↑ = 1√
2

(dx a↑ − (−1)x d
†
x a↓),

cx a↓ = 1√
2

(dx a↓ + (−1)x d
†
x a↑),

which leaves HKondo invariant, while H (�) transforms into a
tight-binding Hamiltonian with a staggered on-site potential:

H0(�) → −t

2L∑
x=1

2∑
a=1

∑
σ

(d†
x aσ dx+1 aσ + d

†
x+1 aσ dx aσ )

−�

2L∑
x=1

2∑
a=1

∑
σ

(−1)x d†
x aσ dx aσ . (8)

In this representation, it becomes evident that the full Hamil-
tonian H = H0(�) + HKondo is invariant under spin SU(2),
channel flavor SU(2), and charge U(1).

A transparent way to build the correct CFT for this model
is to equate partition functions via the so-called character
decomposition. When J = � = 0, the model possesses a large
symmetry. As pointed out by Maldacena and Ludwig [46], it
is convenient to represent the degrees of freedom of the model
in terms of eight chiral Majorana fermions, thus through an
SO(8) CFT. We start from the partition function of the H0(0),
namely of two spinful channels, which reads

Z =
1∑

n1,n2=0

(
χ (1)

n1
χ (1)

n2

)
charge

(
χ (1)

n1
χ (1)

n2

)
spin, (9)

where χ (k)
n with n = 0, . . . ,k are the characters of the SU(2)k

CFT, where k is the level, and they are related to primary
fields φ(k)

n , of spin S = n/2 and dimension S(S + 1)/(k + 2).
In Eq. (9) the SU(2)1 primary fields occur. Since an electron
brings both spin 1/2 and charge isospin 1/2, the label na = 0,1
in each channel is the same in the spin and charge sectors,
where na = 0 is the contribution to Z of states with an even
number of electrons in channel a = 1,2, and na = 1 is the
contribution to Z of states with an odd electron number. It is
known that

χ
(1)
0 χ

(1)
0 = (

χI
0

)4 + (
χI

1/2

)4 + 6
(
χI

0

)2 (
χI

1/2

)2
, (10)

χ
(1)
1 χ

(1)
1 = 4

(
χI

0

)3 (
χI

1/2

) + 4
(
χI

0

) (
χI

1/2

)3
, (11)

χ
(1)
0 χ

(1)
1 = 2

(
χI

1/16

)4
, (12)

where χI
x are the characters of an Ising CFT with primary

fields of dimension 0, 1/16 (σ ), and 1/2 (ε). Substituting
Eqs. (10)–(12) in Eq. (9), one can rewrite the original partition
function in terms of the characters of eight Ising CFT, i.e.,
eight Majorana fermions, and as a benefit get immediately the
degeneracy of the states of each conformal tower.

However, three of the eight Majorana fermions merge
together into the spin operators that are coupled with the impu-
rity, realizing an SU(2)2 CFT. By means of the known results

χ
(1)
0 χ

(1)
0 = χI

0 χ
(2)
0 + χI

1/2 χ
(2)
2 ,

χ
(1)
0 χ

(1)
1 = χI

1/16 χ
(2)
1 ,

χ
(1)
1 χ

(1)
1 = χI

0 χ
(2)
2 + χI

1/2 χ
(2)
0 ,
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that describe the combination of two SU(2)1 CFTs into an
SU(2)2 plus an Ising, we finally obtain the partition function
of the SO(5) × SU(2)2 CFT, where the SU(2)2 refers to the
spin degrees of freedom,

Z = [(
χI

0

)5 + 10
(
χI

0

)3 (
χI

1/2

)2 + 5
(
χI

0

) (
χI

1/2

)4]
χ

(2)
0

+ 4
(
χI

1/16

)5
χ

(2)
1

+ [
5
(
χI

0

)4(
χI

1/2

)+ 10
(
χI

0

)2(
χI

1/2

)3+ (
χI

1/2

)5]
χ

(2)
2 ,

which therefore represents the partition function in terms of
a spin SU(2)2 and five Ising CFTs.

Following the fusion hypothesis [41], the NFL fixed point is
obtained after fusion with an SU(2)2 primary field of spin-1/2,
and it is characterized by the partition function

ZNFL = 4
(
χI

1/16

)5(
χ

(2)
0 + χ

(2)
2

) + (
χI

0 + χI
1/2

)5
χ

(2)
1 . (13)

The ground state belongs to the tower (χI
0 )5 χ

(2)
1 with energy

E0 = 3/16. The next lying state corresponds to 4 (χI
1/16)

5
χ

(2)
0 .

It is fourfold degenerate, and its energy with respect to the
ground state one is E1/8 = 5/16 − 3/16 = 1/8. Above it there
are several states with an energy difference from the ground
state of E1/2 = 1/2. These correspond explicitly to the terms

5(χI
0 )

4
(χI

1/2) χ
(2)
1 , hence a tenfold degeneracy since χ

(2)
1 has

spin S = 1/2. One can proceed further and obtain all levels
and their degeneracies.

When � �= 0, it is more convenient to extract out of the
five Majorana fermions those three that combine to produce a
flavor SU(2)2. This is readily done by observing that

(
χI

0 + χI
1/2

)5 = (
χI

0 + χI
1/2

)2 (
χ

(2)
0 + χ

(2)
2

)
,

4
(
χI

1/16

)5 = 2
(
χI

1/16

)2
χ

(2)
1 ,

so that we can rewrite Eq. (13) as

ZNFL = 2
(
χI

1/16

)2 (
χ

(2)
1

)
flavor

(
χ

(2)
0 + χ

(2)
2

)
spin + (

χI
0

2 + χI
1/2

2

+ 2 χI
0 χI

1/2

) (
χ

(2)
0 + χ

(2)
2

)
flavor

(
χ

(2)
1

)
spin. (14)

The two Ising CFTs can in turn be recombined in a c = 1
CFT on compactification radius R = √

2p′ = 2, which has
the following primary fields:

(i) φ1/8 with dimension 1/8.
(ii) A doubly degenerate field φ

(a)
1/2, a = 1,2, with dimension

1/2.
(iii) The twist operators σ (a) and τ (a) with dimensions 1/16

and 9/16, respectively.
(iv) The dimension 1 operator θ .
It is just the latter operator θ that becomes allowed at the

boundary and which lifts the degeneracy indicated in Eq. (14)
by a bold 2. In Table I we tabulate the NRG finite-size spectrum
at � = 2 in the presence of a small local � term on the first
site of the chain.

TABLE I. Energy levels of the two-channel Kondo (2CK) model
upon including a local � term on the first site of the Wilson
chain. The small deviation from exact values in the progression
0,1/8,1/2,5/8, . . . at � = 0 is a discretization effect.

Q S P deg ε(0) ε(�)

0 1/2 even 2 0 0

−1 0 even,odd 2 0.125 0.1206
1 0 even,odd 2 0.125 0.1290

−2 1/2 odd 2 0.498 0.4897
0 1/2 2 × odd,even 6 0.498 0.4980
2 1/2 odd 2 0.498 0.5063

−1 1 even,odd 6 0.621 0.6165
1 1 even,odd 6 0.621 0.6247

VII. ANDERSON-YUVAL APPROACH IN THE PRESENCE
OF A STAGGERED POTENTIAL

We now sketch an analytical argument that explains
qualitatively and to some extent also quantitatively the NRG
results for the two-channel Kondo model in the presence
of the superconducting gap. We consider the model defined
by Eq. (8), i.e., a tight-binding model in the presence of a
staggered potential �, and we apply a simplified version of the
Anderson-Yuval approach to the Kondo effect [74–76]. The

unperturbed spectrum is ±Ek = ±
√

ε2
k + �2 , and we shall

assume a constant DOS ρ for εk ∈ [−D,D] with D � �.
The first step is to consider the scattering problem for a
frozen impurity (no spin-flip term). Supposing the impurity
spin is down, then the spin-up electrons will feel an attractive
potential, −Jz/4, whereas the spin-down electrons will feel a
repulsive one, +Jz/4. We will briefly define the potential V ,
including both possibilities V = ±Jz/4. The variation of the
DOS for a single spin species due to the impurity is

�ρ(ε) = − 1

π

∂

∂ε
Arg ln(1 − V G(ε)).

We define �(ε) = 1 − V G(ε). G(z) is the unperturbed local
Green’s function depending on the complex frequency z,

G(z) = −2ρ (z + �)
∫ D

0
dω

1

ω2 − z2 + �2 ,

while G(ε) = G(z = ε + i0+). Hereafter, we take � > 0,
which actually corresponds to the case in which at the impurity
site the staggered potential is +� > 0. We find the following:

(i) ε2 < �2,

G(ε) = −2ρ
ε + �√
�2 − ε2

tan−1 D√
�2 − ε2

� −π ρ
ε + �√
�2 − ε2

.

In the second line, we took the D → ∞ limit. In this case,

�(ε) = 1 + π ρ V

√
� + ε

� − ε
.

If V > 0, then �(ε) > 0 ∀ ε ∈ [−�,�]. If V < 0, then �(ε) >

0 for ε ∈ [−�,ε∗], it changes sign at ε∗, and �(ε) < 0 for
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ε ∈ [ε∗,�]. Here

ε∗ = �
1 − (π ρ V )2

1 + (π ρ V )2 .

In the vicinity of ε∗, �(ε) = −(ε − ε∗)/�.
The self-dual point is actually identified by [76]

(
π ρ V

)2 = 1,

so that ε∗ = 0. It corresponds to a genuine bound state just in
the center of the gap.

(ii) �2 < ε2 < D2 + �2,

G(ε) = −iπ ρ sgn(ε)
ε + �√
ε2 − �2

+ ρ
ε + �√
ε2 − �2

ln
D +

√
ε2 − �2

D −
√

ε2 − �2
.

It follows that

Re �(ε) = 1 − Vρ
ε + �√
ε2 − �2

× ln
D +

√
ε2 − �2

D −
√

ε2 − �2
,

Im �(ε) = πρV sgn(ε)
ε + �√
ε2 − �2

.

(iii) ε2 > D2 + �2,

G(ε) = ρ
ε + �√
ε2 − �2

ln

√
ε2 − �2 + D√
ε2 − �2 − D

.

Then Im �(ε) = 0, while

Re �(ε) = 1 − V
ε + �√
ε2 − �2

ln

√
ε2 − �2 + D√
ε2 − �2 − D

.

It follows that, if D � � and ε2 � D2,

�(ε) =
⎧⎨
⎩

1 + π ρ V

√
� + ε
� − ε

, ε2 < �2,

1 + iπ ρ V sgn(ε)
√

ε + �
ε − �

, �2 < ε2 � D2.

At the self-dual point πρV = sgn(V ), thus we rewrite the
above as

�(ε) =
⎧⎨
⎩

1 + sgn(V )
√

� + ε
� − ε

, ε2 < �2,

1 + i sgn(V ) sgn(ε)
√

ε + �
ε − �

, �2 < ε2 � D2.

The retarded local Green’s function reads

GR(ε) = G(ε)

�(ε)
.

In the limit of very large bandwidth so that ε2 � D2, we find
for ε2 < �2

GR(ε) = −π ρ

√
� + ε√

� − ε + πρV
√

� + ε
.

For V < 0, at the self-dual point with ε∗ = 0, its DOS has a
midgap bound state,

A(ε) = − 1

π
ImG(ε) = π ρ � δ

(
ε
)
.

The scattering phase shift is defined as

δV (ε) = arg[�(ε)], (15)

which implies in this case

tan δV (ε) = sgn(V )

√
ε + �

ε − �
.

Indeed, if � = 0 or ε2 � �2, we recover the value at the
self-dual point,

δV (ε) = sgn(V )
π

4
.

On the contrary, if ε2 → �2, we find that for V > 0,

δV (ε → �) = π

2
, δV (ε → −�) = 0.

Indeed, for any η > 0,

δ+(� + η) = π

2
− δ+(−� − η).

We now include in the consideration also the transverse
exchange

H⊥ = J⊥
2

∑
a=1,2

(S− �
†
a↑(0) �a↓(0) + H.c.),

where

�σ (0) =
∑

ε

ψεσ (0) cεσ ,

with ψε(0) the amplitude of the eigenfunction of energy ε at
the impurity site. In particular, at the self-dual point, the bound
state cε=0σ ≡ dσ has

ψ0(0) =
√

ρ �,

so that, if the impurity is down,

�↑(0) =
√

ρ � d↑ +
∑

ε2>�2

ψε↑(0) cε↑,

�↓(0) =
∑

ε2>�2

ψε↓(0) cε↓,

while if the impurity is up,

�↑(0) =
∑

ε2>�2

ψε↓(0) cε↑,

�↓(0) =
√

ρ � d↓ +
∑

ε2>�2

ψε↑(0) cε↓.

Suppose we just consider the contribution to the spin-flip of
the bound state, namely within the subspace of the four states,

|a, ↓〉 = |↓〉 × d
†
a↑ |�↓〉,

|a, ↑〉 = |↑〉 × d
†
a↓ |�↑〉,

where |�σ 〉 is the Slater determinant where the valence band is
fully occupied and the conduction one empty, which depends
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on the impurity spin since the single-particle wave functions
have different phase shifts. One trivially finds that

〈a, ↓| H⊥ | a, ↑〉 = J⊥
2

ρ � 〈�↓ | �↑〉,
where the overlap

〈�↓ | �↑〉 ∼ exp

[
− 8

π2

∫ −�

−D

dε dε′ δ(ε) δ(ε′)(
ε + ε′)2

]

�
√

�

D
,

which does not vanish despite the orthogonality catastrophe
because the gap cuts off the singularity. Therefore, the
antisymmetric combination of the two states, which is a spin
singlet but doubly degenerate since the bound state is occupied
in one channel but empty in the other, has energy lower by
�E ∼ J⊥(�ρ)3/2 than the states where the bound state is
occupied in each channel or when they are not occupied at all,
both states being actually degenerate. Evidently, this is just
the first order in perturbation theory. One needs higher-order
terms. In the spirit of Ref. [75], see also Ref. [44], the spin flip
grows by integrating out the high-energy degrees of freedom
and asymptotically its dimension lowers to 1/2. However, in
the presence of a gap, one cannot push the renormalization
down to zero frequency but must stop at an energy of the
order of �. We thus expect that the net effect is an upward
renormalization of J⊥:

J⊥ → J⊥ ∗ ∼ J⊥√
ρ �

,

so that the energy of the aforementioned doubly degenerate
singlet changes into

�E∗ ∼ − J⊥
2

ρ �,

followed by the S = 1/2 states in which each channel has
the bound state either empty or occupied, at energy 0, and by
the doubly degenerate triplet at energy −�E∗. If the model
is spin-isotropic, J⊥ = Jz = J , and the Kondo exchange is at
the dual point,

π ρ
J

4
= 1,

then

�E∗ � − 2

π
� � −0.636 62 �.

In other words, within such a very rough approximation, the
ground state is indeed the even/odd spin singlet with charge

TABLE II. Quantum numbers and the energies of the lowest-lying
many-particle states in the two-channel Kondo model with g = 0.25
and �/D = 10−6.

Q S P E/�

1 0 odd 0
1 0 even 0
2 1/2 even 0.59
0 1/2 odd 0.60

Q = 1, followed at energy � 0.636 62 � by two S = 1/2
states with charge Q = 0 or 2. Above energy � the continuum
starts.

The subgap many-particle states computed with the NRG
for the 2CK with g = 0.25 and �/D = 10−6 are tabulated in
Table II.

VIII. CONCLUSION

We speculate that impurity models with Kondo overscreen-
ing generically flow in the small-gap limit to fixed points
with characteristic persistent bound states of NFL character.
More generally, let us imagine adding the mass term � first
at the impurity site. This term does not correspond to any
of the relevant boundary operators at the NFL fixed point,
nevertheless it lowers the symmetry and allows for a marginal
boundary operator. If this is the case, we argue that an
arbitrarily weak mass term of that kind added at the impurity
site as well as in the bulk will induce subgap states with
universal ratios.

The predicted universal spectra could be tested in exper-
imental setups involving semiconductor nanowire quantum
dots coupled to superconducting electrodes. Such setups have
been refined in recent years due to the search for Majorana
zero modes, which are predicted to occur in such systems. One
possibility would be building a mesoscopic superconducting
island serving the same role as the “metallic grain” in the setup
in Refs. [35,36]. Alternatively, a Majorana box contacted by
superconducting leads maps to the same model and should
hence host the same universal excitations [77].
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