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We study a series-coupled double quantum dot in the Kondo regime modeled by the two-impurity Anderson
model and find a conduction-band-mediated superexchange interaction that competes with Kondo physics in
the strong Coulomb interaction limit. Our numerical renormalization-group results complemented with the
higher-order Rayleigh-Schrödinger perturbation theory show that the exchange mechanism leads to clear
experimental consequences that can be checked in transport measurements through double quantum dots.
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I. INTRODUCTION

Quantum dots �QDs� �Ref. 1� behave as quantum impuri-
ties, thus they exhibit the Kondo effect, the most spectacular
manifestation of which is the transition from near-zero con-
ductance due to Coulomb blockade to perfect transmission2,3

as the temperature is lowered well below the Kondo tem-
perature, TK. More complex setups allow tailored realizations
of strongly correlated electron systems in new situations.
Double quantum dots �DQDs�,4–7 for instance, are a minimal
system for studying a lattice of magnetic impurities in a tun-
able environment. In the two-impurity Kondo model, the
competition between the Kondo effect and the antiferromag-
netic �AF� interaction between impurities leads to a second-
order quantum phase transition �QPT�.8 It is also known that
the QPT is replaced by a crossover if electrons can tunnel
between the impurities.9 In series-coupled DQDs, the most
important contribution to the total AF exchange coupling is
the superexchange coupling JU�4t2 /U, where t is the inter-
dot hopping and U the on-site interaction. This superex-
change vanishes �JU→0� as U→�, which leads to the com-
mon belief4,7 that the Kondo physics always prevail in the
large-U limit. In this Rapid Communication, we present nu-
merical renormalization-group �NRG� calculations which
confute the above claim and unambiguously demonstrate the
presence of a type of spin-spin interaction which competes
with Kondo physics in the large-U limit. Our main findings
are illustrated in Fig. 4 where the peak position of the linear
conductance through a DQD versus t exhibits a striking and
unexpected dependence on �, the QD level broadening due
to the coupling to the reservoir. Interestingly, the novel spin-
spin interaction reported here leads to observable experimen-
tal consequences such as zero conductance G�0 in regions
where unitary transport G�2e2 /h is expected and vice
versa. Intuitively, we can understand this spin-spin interac-
tion in terms of virtual tunneling events involving
conduction-band electrons; see Fig. 1. The strength of this
spin-spin interaction, which we call conduction-band-
mediated superexchange, JI, can be estimated in the large-U

limit using Rayleigh-Schrödinger perturbation theory
�RSPT� as10

JI =
4t2�2

�2 �
EF

D d�1d�2

��1 − ��2��2 − ��2��1 + �2 − 2��
�1�

for t� ���, where ��0 is the single-particle energy level of
QD. Here EF=0 and D are the Fermi energy and the half-
width of the conduction band, respectively. For a wide band
�����D�, it simplifies to JI�ct2�2 / ���3 with a constant
c=8�1−ln 2� /3�2�0.083. Interestingly, a single lead is suf-
ficient to induce a finite exchange JI�0, as seen in Fig. 1.
Remarkably, this high-order tunneling process is able to af-
fect the transport properties of DQDs. In what follows, we
present in detail our NRG study and discuss thoroughly the
conditions under which JI can compete with Kondo physics
in regions where JU vanishes.

II. MODEL AND METHODS

We model the DQD by the two-impurity Anderson model:

H = �
�k�

�kc�k�
† c�k� + �

�

��n� + Un�↑n�↓�

− t�
�

�d1�
† d2� + H.c.� + �

�k�

V�c�k�
† d�� + H.c.� . �2�

Here c�k� destroys a spin-� electron with energy �k in the
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FIG. 1. �Color online� The sequence of virtual processes of the
most significant contribution to the conduction-band-mediated ex-
change JI in the large-U limit. Here the circles �rectangles� denote
dots �leads�.
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lead �=1,2 and d�� an electron in the dot �=1,2;
n�	��d��

† d�� is the occupation of the dot �. For simplicity,
we assume reflection symmetry with respect to the inter-
change 1↔2 of leads and dots. The single-particle energy �
on each dot is tunable by gate voltages. The hybridization
between the dot and lead is characterized by �=�	V2, with a
flatband density of states 	=1 /2D. Throughout this work, we
fix �=−0.1D and focus on the Kondo regime with localized
level, �� ��� and large charging energy U
2���.

We solve the Hamiltonian with the standard NRG
procedure.11–13 At low temperatures, a Fermi-liquid system is
described by an effective Hamiltonian that takes a form simi-
lar to the original Hamiltonian but with renormalized
parameters.14 Previous works have applied this theoretical
approach to deal with single dots.14 Here we extend it to treat
the two-impurity problem of a DQD. It is then technically
convenient to change to the parity basis �even and odd�:
ce�o�k�= �c1k��c2k�� /
2 and de�o��= �d1��d2�� /
2. In this
basis, the Hamiltonian in Eq. �2� reads as

H = �
s=e,o

��
k�

�kcsk�
† csk� + �sns +

U

2
ns↑ns↓�

+
U

4
neno − USe · So −

U

2
�de↑

† de↓
† do↓do↑ + H.c.�

+ �
sk�

V�csk�
† ds� + H.c.� . �3�

Here the local spin operator is defined by
Ss= 1

2��������ds�
† ds�� with � being Pauli matrices, and the

even �odd� level is given by �e�o�=�� t.
The renormalized parameters at the Fermi-liquid fixed

point �which we denote by appending an asterisk to bare
parameter symbols� are extracted from the NRG flow
diagrams.10 Additional terms, missing in the bare Hamil-
tonian, which are allowed by the symmetry are generated in
the renormalization process. In the absence of the particle-
hole �p-h� symmetry, for example, coefficients Us of the term
ns↑ns↓, hybridization �s, and energies �s will renormalize dif-
ferently in each parity channel. In the p-h symmetric case we
were able to determine all interaction terms in the local basis,
in particular, the exchange coupling J12

� between dot spins
S1 and S2. Finally, the linear conductance is determined by
even and odd quasi-particle scattering phase shifts as
G= �2e2 /h�sin2�
e−
o�.4 In the following we consider two
cases: �i� the model with the p-h symmetry and
intermediate-U, where the physics is dominated by JU, and
�ii� the large-U case where JU is suppressed. Analysis of two
cases reveals the emergence of a type of antiferromagnetic
coupling JI generated by high-order virtual tunneling events
�see Fig. 1� among the electrons localized on dots and the
itinerant carriers in the reservoirs.

III. PARTICLE-HOLE SYMMETRIC: INTERMEDIATE-U
REGIME

Let us review briefly the main features for the p-h sym-
metric case in Fig. 2. The Friedel-Langreth sum rule imposes
the relation 
e+
o=� for all t and then the average occupa-

tion per spin channel is one. The physics is governed by the
competition between the Kondo and the AF energy scales.
For small t, J12�TK and each dot spin forms a Kondo singlet
state with conduction electrons in the neighboring lead,
while the weak interdot coupling yields small conductance.
Furthermore, the spin-spin correlation 
S1 ·S2� vanishes; see
Fig. 3�a�. As t→�, J12�TK, and the dot spins are locked
into a local singlet state, thus inhibiting the Kondo effect,
and consequently the conductance is small in this limit as
well. As t increases from 0 to �, the conductance exhibits
one pronounced peak as shown in Fig. 2�a� where the peak
position is determined by the condition Jc�t= tc�=J12�TK.
At this point the spin correlation takes the value

S1 ·S2�=−1 /4 due to the singlet-triplet degeneracy.8 The
crossover occurs from the Kondo to AF regime4,9 where
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FIG. 2. �Color online� �a� Zero-temperature linear conductance
and phase shift difference 
=
e−
o in the symmetric case �inset� as
functions of t /�, U=2���. Lines are guidance for eyes. �b� Linear
conductance G �filled symbols� and phase shift as functions of the
scaled exchange coupling, �J12−Jc�� /TKt. Results for the phase
shift differences and for conductance collapse well onto universal
curves, the scaling functions fitted to the data.
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FIG. 3. �Color online� Zero-temperature properties of the p-h
symmetric model �left panels� and the p-h asymmetric U=� model
�right panels� for �=0.01D. �a,d� Linear conductance and spin-spin
correlation 
S1 ·S2�. �b,e� Renormalized parameters, t�, �e

�, �o
�, and

����. In the symmetric model, �e
�=�o

� and ��=0. ��c� and �f�� Renor-
malized superexchange coupling in the local basis �c� and in the
parity basis �f�.
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J12�TK, and the parameters t� and �� become equal at
J12=Jc. This crossover is known to be well described by a
scaling function:4 
 /�=���J12−Jc�� /TKt�, with ��−��=0
and ����=1 which is in good agreement with our numerical
results; see Fig. 2�b�.

IV. LARGE-U REGIME

We found that the large-U case is governed by spin-spin
correlations mediated by the conduction-band electrons. The
linear conductance features a plateau starting at t���� �Ref.
15� and a peak at lower t; see Fig. 4. Importantly, the peak
reaches the unitary limit and shifts toward larger t /� with
increasing � as in the symmetric case. It must be emphasized
that this behavior of the conduction peak is wholly unex-
pected and disagrees with previous analyzes for the U→�
limit. We therefore continue with a more detailed study of
this feature. In the large-U limit, the usual superexchange
JU�1 /U vanishes. For this reason, the conductance peak has
been traditionally ascribed to the formation of even and odd
Kondo states occurring at ��= t�. In addition, some
theories4,16 predicted that � and t are renormalized in the
same manner, thus the transition from individual Kondo
states to bonding and antibonding states was expected to
happen at �= t. However, the results in Fig. 4 are in clear
disagreement with this picture: the conductance peak is not
located at �= t but rather at t�� and it is shifted toward
smaller t /� with decreasing �. This suggests the presence of
some processes which are responsible for the different renor-
malization of � and t. We indeed find an exchange coupling
between the dot spins, which is manifested in the unexpect-
edly strong antiferromagnetic correlation 
S1 ·S2��0 in Fig.
3�d�. At the conductance peaks, this correlation takes the
value of −1 /4. The origin of the exchange coupling at
U→� is illustrated in Fig. 1 in which the dot spins get to be
locked into a singlet state by means of virtual tunneling pro-
cesses where conduction-band electrons participate.

The strength of this conduction-band-mediated superex-
change coupling JI in the large-U limit is estimated using the
RSPT; see Eq. �1�. The RSPT �or projection method� should
be enough to extract the almost true value of JI since JI is
due to the charge fluctuations, as JU is; see Fig. 1. Further
scaling would affect only the spin fluctuation part related to

the Kondo effect and not to the local spin interactions.
Hence, JI computed from the RSPT should be, at least in
order of magnitude, very close to the one that competes with
the Kondo scale. The superexchange coupling JI is generated
at the fourth order of V in the RSPT scheme and in the limit
t� ��� ,U it is of the second order in t; see Eq. �1�. It is
remarkable that such higher-order processes lead to suffi-
ciently strong spin correlations to qualitatively affect the
transport properties of the DQD. The maximal conductance
at the crossover region occurs because JI drives the system
from the Kondo phase to the antiferromagnetic phase at
JI�TK, in full analogy with the symmetric case. This is un-
derpinned by the observation that the renormalized �� goes
through zero, even and odd hybridizations become equal,
�e

�=�o
�=��, and ��= t�; see Fig. 3�e�. At this particular point,

the p-h symmetry is, surprisingly, restored at low energies.
We also find that the magnetic interaction Jeo

� �it is techni-
cally difficult to extract J12

� unlike in the p-h symmetric case�
again exhibits a local minimum at the crossover �see Fig.
3�f��. The fact that the conductance peak is shifted away
from �= t can be regarded as the experimental proof of the
existence of a type of spin-spin correlations not accounted so
far. Other theoretical techniques such as slave-boson
decomposition4,16 do not describe properly these magnetic
correlations between the dot spins that arise naturally as the
interplay between the tunneling events and the Coulomb re-
pulsion. In these approaches, spin-exchange interactions are
usually included ad hoc.13

V. CROSSOVER

Now we address the intermediate regime with medium U
where both antiferromagnetic couplings are finite. After a
lengthy calculation it is possible to obtain an analytical ex-
pression for JI as a function of U.17 The expression is too
cumbersome to appear here and we just plot the final results.
The inset in Fig. 5 shows the relative portion of JI in the total
superexchange versus U. For sufficiently large U, JI surely
dominates over JU that eventually vanishes as U→�. For
intermediate values of U�10D, JI�JU the physics is gov-
erned by the superexchange interaction JU, while it is JI that
suppresses the Kondo correlations for larger U. Since JI is
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FIG. 4. �Color online� Zero-temperature linear conductance and
phase-shift difference 
=
e−
o �inset� in the large-U case �U=��.
Lines are guidance for eyes. The dashed line is obtained from the
SBMFT calculation �Ref. 4�.
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proportional to �2, the value of U where JI becomes domi-
nant over JU can be lower with increasing �. The competi-
tion between JI and JU are also reflected in the main plot of
Fig. 5, where the linear conductance peak position versus U
is plotted. While for intermediate U the peak position is well
identified by the condition JU�TK �dotted lines�, which is in
agreement with previous theories, the deviation becomes sig-
nificant for large U, and in the U→� limit the peak position
is given by the condition JI�TK. Interestingly, a good fitting
for arbitrary value of U is obtained by determining the peak
position by imposing the condition J=JI+JU=2.2TK, with
TK=
� min�U ,D� /2 exp�2���1+� /U� /��. Thus, the
conduction-band-mediated superexchange explains in a very
suitable manner �both qualitatively and quantitatively� the
saturation of the conductance peak as U is increased. Our
estimation of the peak position from the RSPT is slightly
larger than one obtained from the NRG calculations. It is due
to our neglect of further scaling of JI with integration of the
conduction band and the renormalization of TK due to the
interdot coupling. Both renormalizations should be quite
marginal and may lead to slightly larger JI and smaller TK,
with which the condition J=2.2TK gives rise to smaller con-
ductance peak position.

VI. DISCUSSION

The RSPT estimation predicts that JI becomes comparable
to JU at U�Uc=4���3 /c�2. The ratio Uc / ��� is then of the
order of a few hundreds in order to retain the Kondo effect
���� /��1�. The condition can be satisfied through the elec-
tric control of the single-particle level in tunable samples or

by making use of ultrasmall samples with strong Coulomb
interaction. One of the latter candidates is a junction made of
molecular dimers where U is about a few eV. While the
interdot coupling of dimers can hardly be tuned, the gate
voltage control of � and � can nevertheless fulfill the cross-
over condition JI�TK, allowing us to examine the role of the
superexchange on the transport.

VII. CONCLUSION

We have reported on a conduction-band-mediated super-
exchange interaction, JI, that competes with Kondo physics
in the large-U limit of the two-impurity problem. The ex-
change mechanism brings more unity to this problem in
terms of magnetic correlations, and the transport through the
DQD can be analyzed in terms of the competition between
the Kondo correlation and the antiferromagnetic interaction
for all values of U. Transport experiments can confirm the
presence of high-order superexchange coupling by examin-
ing the dependence of the peak position on the interdot hop-
ping amplitude.
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