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Fano-Kondo effect in side-coupled double quantum dots at finite temperatures
and the importance of two-stage Kondo screening
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We study the zero-bias conductance through the system of two quantum dots, one of which is embedded
directly between the source and drain electrodes, while the second dot is side coupled to the first one through
a tunneling junction. Modeling the system using the two impurity Anderson model, we compute the tempera-
ture dependence of the conductance in various parameter regimes using the numerical renormalization group.
We consider the noninteracting case, where we study the extent of the departure from the conventional Fano
resonance line shape at finite temperatures, and the case where the embedded and/or the side-coupled quantum
dot is interacting, where we study the consequences of the coexistence of the Kondo and Fano effects. If the
side-coupled dot is very weakly interacting, the occupancy changes by two when the on-site energy crosses the
Fermi level and a Fano-resonance-like shape is observed. If the interaction on the side-coupled dot is sizeable,
the occupancy changes only by one and a very different line-shape results, which is strongly and characteris-
tically temperature dependent. These results suggest an intriguing alternative interpretation of the recent ex-
perimental results study of the transport properties of the side-coupled double quantum dot [Sasaki et al., Phys.
Rev. Lett. 103, 266806 (2009)]: the observed Fano-like conductance antiresonance may, in fact, result from the
two-stage Kondo effect in the regime where the experimental temperature is between the higher and the lower

Kondo temperature.
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I. INTRODUCTION

In condensed-matter physics, the Fano resonance line
shape'? is commonly observed in the low-temperature zero-
bias conductance curves of various mesoscopic and nano-
scale electronic devices when the energy of a weakly
coupled discrete state is swept across the Fermi level using
gate voltages. A prototype system where Fano physics may
be observed consists of a single quantum dot side coupled to
a quantum wire.>~!> The Fano line-shape results from an in-
terference of the quantum amplitudes for the conduction
pathway directly through the quantum wire without passing
through the quantum dot and the indirect conduction path-
way via the quantum dot. The first pathway plays the role of
a broad background process, while the second corresponds to
a resonant scattering channel. The conductance as a function
of the discrete state energy level € is well described by the
Fano function

(E+q)*
G(E)=a———5 +b, (1)
where
€E— €
E= : 2
T (2)

is a dimensionless energy that measures the energy differ-
ence from a resonance energy €, in units of the resonance
half-width T, ¢ is the Fano parameter given by the ratio of
resonant and background scattering amplitudes, while a and
b are some coefficients.'® This energy dependence holds as
long as the background conductance is constant over the
width of the resonance; in experiments, curve fitting with

1098-0121/2010/81(11)/115316(9)

115316-1

PACS number(s): 73.23.—b, 72.15.Qm, 75.20.Hr, 73.40.Gk

Fano profile is typically done in an energy window of the
order of several times T’

The situation becomes more involved in a related struc-
ture consisting of two quantum dots, the first of which is
embedded in the direct conduction pathway between the
source and drain electrodes and the second is side coupled to
the first one by weak tunnel coupling, as illustrated in Fig. 1.
This nanostructure, also known as the “side-coupled double
quantum dot,” allows to study the interference between the
direct and indirect conduction pathways (i.e., the Fano ef-
fect), as well as various correlation effects resulting from the
strong electron-electron repulsion between the confined elec-
trons, in particular the Kondo effect.!’~?* Taking into account
only the electron levels in close vicinity of the Fermi level,
this system can be adequately described at low temperatures
using a two impurity Anderson model which is a simple
extension of the single-impurity model that is commonly
used for studying transport properties of single ultrasmall
quantum dots.> The side-coupled double quantum dots have
been intensively studied theoretically,?®=3* uncovering a fas-
cinating interplay between many-particle effects and quan-
tum interference, however the first experimental study of this

source

FIG. 1. (Color online) Schematic representation of the double
quantum dot nanostructure consisting of a quantum dot (d), embed-
ded between the source and drain electrodes, and a side-coupled
quantum dot (a).
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system has been performed only very recently (Ref. 35).
Most previous theoretical works consider the zero-bias con-
ductance in the zero-temperature limit, while the experiment
is decidedly performed at finite temperatures. It is known
that this system is characterized by very low-energy scales in
some parameter regimes (in particular in the case of the two-
stage Kondo effect?®2%3%), thus in order to properly describe
its transport properties it is imperative to consider thermal
effects and to calculate the conductance at finite temperatures
using a nonperturbative method. This is the goal of the
present work.

This paper is structured as follows. In Sec. II, the model
and the numerical renormalization group method are pre-
sented. The thermal effects are first studied in the noninter-
acting model in Sec. III, where we show that at finite tem-
peratures the resonance line shape still has the Fano form to
a good approximation, albeit with temperature-dependent pa-
rameters. In Sec. IV, we then focus on the Fano-Kondo effect
in the case where only the directly embedded quantum dot is
interacting and experiences the Kondo screening; in this case
the resonance line shape itself is appreciably modified by the
combined Fano interference and Kondo effect. In Sec. V, we
finally study the fully interacting case, where completely dif-
ferent behavior is found. Finally, in Sec.VI, the recent ex-
perimental results are examined and compared to theory,
leading to the conclusion that the observed line-shape (an
antiresonance) is indicative of the occurrence of the two-
stage Kondo effect.

II. MODEL AND METHOD

The Hamiltonian under study takes the following form:

U,
H=68,(ng—1) + 8,(n,— 1) =1, (d}a, +He.) + ?d(nd— 1)2

U .
+ f(”a -1+ 2 €CroCho+ VE (c,i,do+ H.c.), (3)
ko ko

where ndzﬁadZd(, and nazﬁgala,,. The operators dj, and af,
are creation operators for an electron with spin o on the
embedded quantum dot d and on the side-coupled dot a, see
Fig. 1. The on-site electron-electron repulsion is denoted by
U,, where a stands for d or a. The on-site energies €, of the
dots are shifted by U,/2 in order to define the parameters

8y= €+ U2, 4)

which measure the detuning from the particle-hole symmet-
ric case, which corresponds to §,=35,=0. The coupling be-
tween the dots is described by the interdot tunnel coupling ¢.
The dot d is assumed to couple to the source and drain elec-
trodes in a symmetric way, thus, it hybridizes with the even-
parity combination of electrons from both leads!”37 with the
strength

I,=mpV?, (5)

which will be assumed to be constant for all energies within
the conduction band of half-width D (equivalently, the den-
sity of states in the conduction band, p, is assumed to be
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constant, p=1/2D). Throughout this work, I"; will be fixed
to I';/D=0.06.

For the correct description of correlated regimes in clus-
ters of quantum dots3!38-3% it is necessary to use nonpertur-
bative techniques that take properly into account not only the
local correlation effects on the impurity sites, but also the
charge fluctuations and intersite spin-spin coupling induced
by the exchange interaction. One such technique is the nu-
merical renormalization group (NRG)»7° which involves
three steps: (1) logarithmic discretization of the conduction
band, (2) mapping onto a one-dimensional tight-binding
chain with exponentially decreasing hopping constants, and
(3) iterative diagonalization of the resulting Hamiltonian.
The results presented in this work have been calculated using
the NRG discretization parameter A=4 with N,=8 equidis-
tant values of the twist parameter z using an improved dis-
cretization scheme,’®’! with the truncation cutoff set at
10wy. The expectation values are calculated in the standard
way, while the conductance curves at finite temperatures are
computed using the Meir-Wingreen formula from the spec-
tral data:®>6472

oo

G(T) = Gowrdf dw(— ﬁ—f)Ad(w, 1), (6)
Jw

—o0

where Gy=2¢*/h is the conductance quantum (i.e., the
conductance corresponding to full transmission), f(w)
=[1+exp(Bw)]™! is the Fermi function where 8=1/k,T and
the chemical potential has been fixed at zero energy, and
A (w,T) is the spectral function on the impurity site d.

It should be noted that there is a significant conceptual
difference as regards the usage of the Fano formula in the
context of scattering experiments in atomic physics and the
present context of nanoscopic transport. In atomic physics,
the resonance is observed in the scattering cross-section as a
function of the energy of the incoming particle while the
resonance energy is fixed. In transport experiments, the reso-
nance is observed in the conductance, which relates to the
scattering of electrons at the fixed energy of the Fermi level
(this is strictly true only at zero temperature; at finite tem-
peratures, electrons within an energy window of order kzT
participate in the transport) and the independent variable is
the energy of the side-coupled dot, which is swept using gate
voltages. In spite of the seemingly symmetric roles of param-
eters € and ¢, in the expressions in Egs. (1) and (2), there is
a notable difference as regards the role of the background
channel. The background scattering phase shift namely de-
pends on the variable parameter in the first case, while it is
essentially constant in the second case (at zero temperature).
There may be some small variation of the background scat-
tering phase shift when the parameters of the side-coupled
dot are changed, since the two impurities are coupled and
there will be hybridization effects induced by the side-
coupled dot on the embedded dot. Nevertheless, this effect is
rather small. We therefore conclude that any significant de-
viation from the universal Fano line-shape profile may only
result from electron correlation effects or from thermal ef-
fects.
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Furthermore, it should be remarked that the approach
used in this work does not take into account that at high
temperatures, the phase coherence necessary for the Fano
interference may be partially lost, since full quantum coher-
ence is assumed in solving the model.'>7* This implies that
in experiments further reduction of the resonance amplitude
is expected in addition to that found in our calculations,
which only take into account the effects due to the thermal
broadening of the electron distribution function in the source
and drain electrodes. In the following, we set kz=1 and the
conductance is always expressed in units of G,

III. NONINTERACTING CASE

The Fano formula has been originally formulated for a
quantum system in its ground state. For a noninteracting sys-
tem (U,=U,=0), it is thus expected to describe the zero-
temperature conductance essentially exactly as long as the
background remains constant, which is the case if the Fano
resonance is narrower than the Lorentzian spectral peak on
the embedded quantum dot (of half-width I';). The charac-
teristic energy scale of the level broadening on the side-
coupled quantum dot is

Yal€,) = TAY €L, (7)

where Ag(w) is the spectral function of the level d in the
absence of the level a, which is given by

R

AYw)=——
al@) WFd(w—ed)z/F3+l

(8)
in the wide-band limit which applies well here for the chosen
I';=0.06D. For later reference, we also give the full spectral
function of the level d in the presence of the side-coupled
dot,

s 1 0?
alw) = al,[1 - (w-€)(w— )P+ Q*
with Q=(w-¢€,)/(*/T,).

The noninteracting case is also a good test for the NRG
procedure, since a comparison with essentially exact results
from simple quadrature of the spectral function is possible.
We find that the results (detailed in the following subsec-
tions) are correct within the linewidth or, more precisely,
within less than half percent. A similar degree of precision is
then also expected in the interacting case considered later on,
since the NRG method functions equally well for any value
of U.

)

A. Symmetric case, €;,=0

Fixing €,=0 and taking the value of A%(w) at the Fermi
level, AS(O): 1/ @I, we obtain

2
I'y=7,0)=—. (10)

Ly
The Fano formula applies for I',<T",, therefore the range of
validity is expected to be given by r<<I";. In fact, for €,=0 it
turns out that the zero-temperature linear conductance G(0)

PHYSICAL REVIEW B 81, 115316 (2010)

a) |
T /D=0.06
0.8 t/D=0.001
I \ =0. Z I,
N 7
o061 \ 7 | =0
) — 025
g r — 05
S04} — 075
| 2 1.0
ook Tt 125
“[ I'/D=1.6710" 15
O =175
O 2 0 2 4
E=¢ IT
b) 2.5 2 1
r 0.8
2 a7
B <06
ST < TIT, 1
o4
15¢ b=]
I &0 o2
g=0 |
L | L
o 0.5 10
T,

FIG. 2. (Color online) Noninteracting model with U,=U,=0,
symmetric case, €;=0. (a) Conductance curves for a range of tem-
peratures. Fano-resonance-line fits overlap completely with the con-
ductance curves. (b) Fano parameters as a function of the
temperature.

=Gyl ;A,(0) reduces exactly to the Fano formula for any
value of the /T, ratio,

2

G(0) = , (11)

1 +E?

with E=¢€,/I",. The asymmetry parameter ¢ is clearly zero,
thus the Fano resonance takes the form of a symmetric anti-
resonance.

The conductance curves for the noninteracting model with
€,=0 are shown in Fig. 2(a). At all temperatures, the reso-
nance line shape can be described with excellent accuracy
using the Fano formula with temperature dependent param-
eters, which are shown in Fig. 2(b). The characteristic tem-
perature scale for the temperature dependence of the conduc-
tance curves is, as expected, I',. An approximate expression
for the temperature dependence of the resonance width in the
temperature interval [0:1",] is

[=T,[1+c(TT,)]2, (12)

with ¢;=9.2 and ¢,=0.46. This temperature-variation rule
holds only in the #/T";— 0 limit: in general, the temperature
variation also depends on the ¢/T; ratio.

We have verified that for €,=0 the Fano curve accurately
describes the finite-temperature conductance even for ¢ of the
order of I'; (results not shown).

B. Asymmetric case, €;# 0

For €,# 0, the d-level Lorentzian is no longer fixed at the
Fermi level, which has a number of significant conse-
quences. The effective level broadening on the side-coupled
dot is reduced and it is given by
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FIG. 3. (Color online) Noninteracting model with U,=U,=0,
asymmetric case, €;#0. (a) Conductance curves for a range of
temperatures. Full curves: NRG results. Dashed lines: Fano reso-
nance line fits. (b) Fano parameters as a function of the temperature.
Parameters are extracted by curve fitting in the energy window
which corresponds to the horizontal axis in the upper subfigure.

1 1

ri=v0=—=5—.
“ ya( ) Fd(ed/rd)2+1

(13)
Furthermore, the background phase shift is no longer /2,
thus the asymmetry parameter ¢ is different from 0. From
Eq. (9) it is clear that the zero-temperature conductance is
always zero at €,=0, however, the actual resonance energy e,
is actually shifted away from zero. In fact, within an error of
order /T2, the following Fano parameters hold at 7=0 for
general €

€.= €y,
r=r,,
q= Ed/rd,

1
a= 1+ (Gd/rd)2 ’

b=0. (14)

The results of a temperature-dependent calculation for
€,/T';=0.5 are shown in Fig. 3. We observe a departure from
the Fano line-shape, which grows as the temperature is in-
creased; nevertheless, the departure is small and it is still
meaningful to perform curve fitting using the Fano formula.
Similar to the symmetric €,=0 case, the main effect of finite
temperature is to increase the width of the Fano resonance
beyond I',, and to reduce the amplitude of the resonance. The
asymmetry parameter ¢ is, however, nearly constant, it re-
duces from ¢=0.5 at zero temperature to ¢=0.47 at T=I",,
while in the same temperature interval the amplitude is re-
duced by half. The resonance position, as given by e,, is also
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affected rather weakly. Such behavior is characteristic of the
t<<TI'"; limit. For larger ¢, the extracted Fano parameters g and
€, are more strongly temperature dependent, however, the
deviation from the Fano profile remains small (results not
shown).

We conclude, fully in line with the expectations, that in
the noninteracting case the main effect of finite temperature
is to reduce the amplitude and increase the width of the reso-
nance, while the Fano line shape is largely preserved. As we
show in the following, this is no longer the case in the pres-
ence of interactions, except in some special limits.

IV. INTERACTING CASE WITH U,;#0 AND U,=0

The occurrence of the Fano resonance in transport prob-
lems is always associated with changes of the charge state of
the weakly coupled discrete state. For this reason, there is a
significant difference between the U,<T", and U,>T, situ-
ations. In the first limit, the occupancy changes by 2 (by one
electron for each spin orientation) as €, crosses the Fermi
level, thus the phase change in each spin channel is 7 this
corresponds to the usual Fano-resonance scenario. In the sec-
ond limit, the total occupancy changes only by one due to the
electron-electron repulsion preventing the second electron
from entering the quantum dot. This corresponds to a 7/2
phase shift in each spin channel and, roughly speaking, only
one half of the Fano-resonance-like feature is expected to be
seen. In this section we discuss the first case, i.e., the U,
<T, limit, which we study by setting U, to zero.

When the embedded dot is tuned to its particle-hole sym-
metric point (8,=0), the impurity spectral function AY is
pinned at the Fermi level to the value of 1/ 7, irrespective
of the value of the electron-electron repulsion U,. This is
true even for moderate departures from the particle-hole
symmetric point, |8,/ =< U,/2, since the Kondo resonance re-
mains near the Fermi level, unlike the Lorentzian peak in the
noninteracting case. For small 7, the characteristic energy
scale of the side-coupled quantum dot is therefore still T,
=1*/T'; as in the symmetric noninteracting case. For larger ¢
the broadening will, however, eventually become compa-
rable to the width of the Kondo resonance (of order YOK) The
behavior, therefore, depends on the ratio between the hybrid-
ization of the side-coupled dot I', and the Kondo temperature
of the decoupled embedded dot, 7% If Fa<T(I){, the physics
of the embedded dot will not be affected much by the side-
coupled dot (and vice versa), thus the conductance as a func-
tion of €, will differ only slightly from the noninteracting
case. This is illustrated in Fig. 4, upper panel, where we
compare conductance curves for U,=0 and U,/D=1 at
t/D=0.0001, where R/T%: 1.7 X 1073 since the Kondo tem-
perature (Wilson’s definition) is T(,)<=9.7 X 1073D. In this re-
gime, the Kondo effect on the embedded dot in no way af-
fects the Fano interference process in the relevant range of
energies and temperatures (i.e., several times I',). Only for
very large €, and very high temperature (of the order of T%)
will the differences become apparent, however this is outside
the parameter regime of interest here.

When T',, is equal to a considerable fraction of 7{,)( we start
to see small quantitative departure from the Fano line shape
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FIG. 4. (Color online) Resonance curves for noninteracting (full
lines) and interacting models (dashed lines) for a range of scaled
temperatures 7/I", and for different I,/ T% ratios.

already for €, and T of the order of I',, see Fig. 4, middle
panel. This is clearly a consequence of the competition be-
tween correlation and interference effects, combined with
further thermal effects. As expected, the discrepancy grows
with increasing €, and 7.

Finally, for Fa>]{;{, the embedded dot is strongly per-
turbed by the coupling to the side dot and the differences
become drastic: at finite 7, the line-shape differs qualitatively
from the Fano form and, in particular, we observe the emer-
gence of nonuniform E dependence with broad humps
around E~T,.

It is instructive to perform curve fitting on the results
where the Fano resonance is already strongly perturbed, as
shown in Fig. 5. The fits (shown using dashed lines), per-
formed in the energy interval [-4I",: +4T,], are clearly inad-
equate. Extracted Fano parameters indicate that the reso-
nance width is significantly reduced below I, and its width
even decreases with increasing temperature, which reflects
the situation where the spectral function of the embedded dot
has a significant variation on the energy scale of I',, which
affects the resonance line shape for large E. It should also be
noted that parameters a and b have “unphysical” values a
>1 and b<<0 for small T. If the curve fitting is performed in
a narrower energy interval [-I",:+I",,], the asymptotic small
E form of the resonance can be well captured, however the
extracted Fano parameters are factitious and therefore of
little use. This demonstrates that in the presence of strong
competition between the Fano interference and Kondo effect,
the curve fitting using the Fano line shape is not recom-
mended since the results depend very strongly on the energy
window where fitting is performed and it is thus not advis-
able to make any inference based on them.

Since there are two different energy scales in the problem
(Y{I)< and I',), the temperature dependence of the conductance
is expected to be nonmonotonic, as shown in Fig. 6 where
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FIG. 5. (Color online) Interacting model with U;#0 and U,
=0. Symmetric case, €,=0. (a) Conductance curves for a range of
temperatures. (b) Fano parameters as a function of the temperature.
Curve fitting is performed in the energy window, which corresponds
to the horizontal axis in the upper subfigure.

we plot the conductance at the bottom of the Fano antireso-
nance (i.e., for €,=0). Such dependence is a consequence of
the competition between the Kondo and Fano effects. The
Kondo effect tends to increase the conductance through the
formation of many-particle resonance at the Fermi level
which opens a new conduction channel through the system.
On the other hand, the Fano effect suppresses the conduc-
tance through quantum interference. For 7‘1)<> I',, the con-
ductance first increases at the higher temperature scale of 7%
(the temperature dependence being given by the universal
Kondo conductance curve’?), then it decreases at the lower
temperature scale set by I',: see results for 1/ D=0.0001 and
t/D=0.001 in Fig. 6. Note that the unitary limit of full con-
ductance quantum is not achieved at intermediate tempera-
tures even in the case of well-separated energy scales (three
orders of magnitude for #/D=0.0001). For larger ¢, the con-
ductance peaks near T~1",, where both competing effects
are equally suppressed by thermal fluctuations.

It is also worthwhile to compare the temperature depen-
dence of the conductance G(T) with the energy dependence

Ll PR | L
10° 10' 10°
T/l"a

FIG. 6. (Color online) Temperature dependence of the conduc-
tance for €,=0, i.e., at the bottom of the conductance antiresonance,
for a range of the interdot coupling strengths.
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FIG. 7. (Color online) Comparison of the temperature depen-
dence of the conductance G(T) with the energy dependence of the
zero-temperature spectral function on the embedded dot Ay (w,T
=0). For completeness, the spectral function on the side-coupled
dot A (w,T=0) is also shown. Spectral functions are rescaled in
units of the respective effective hybridization strength, i.e., by
1/ 7T, where i € {a,d}. Conductance curves are rescaled in units of
the conductance quantum Gy=2¢%/h. The horizontal axis is res-
caled in units of I',=r2/T'; (note that I', is different in each
subfigure).

of the zero-temperature spectral function A, (w,T=0), see
Fig. 7. A common approximation in discussing the transport
properties of quantum dot systems is to assume that the tem-
perature variation of the conductance simply follows the en-
ergy variation of the zero-temperature spectral function, i.e.,
G(T)==wl'jJA,T,0). While this is true on the qualitative
level, the numerical results shown significant qualitative dif-
ferences: the conductance curves are generally significantly
broader and, accordingly, their maxima are lower. In particu-
lar, while the spectral function often attains values very close
to 1/7["; in some frequency range, the conductance is not
unitary in the corresponding temperature range.

The parameter regime studied in this section corresponds
to the model used in Ref. 35 to obtain the conductance plots
featuring an antiresonance, which were proposed to explain
the experimentally observed Fano-resonance-like line shapes
with small g. It can be noticed, however, that this parameter
regime is not appropriate, since it corresponds to a change of
occupancy of the side dot by 2, while from the experimen-
tally observed honeycomb stability diagram one can deduce
that the electron number changes only by one. We return to
this issue in Sec. VL.

V. FULLY INTERACTING CASE

We first study the effect of finite electron-electron repul-
sion on the side-coupled dot in the case where the embedded
dot itself is noninteracting, U;=0. In this way we exclude all
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FIG. 8. (Color online) Conductance curves and level occupan-
cies at 7=0 for a range of electron-electron interaction strengths U,,.
Left panels: noninteracting embedded impurity. Right panels: inter-
acting embedded impurity. The arrows show the direction of in-
creasing U,,.

processes related to the interdot exchange interaction and we
may focus on the path-interference physics. To simplify the
discussion, we focus solely on the symmetric case with €,
=0. As previously discussed, as long as U,<<I',, the side-
coupled dot is essentially noninteracting and the results are
equivalent to those shown in Sec. III A. For larger U,
> 7", however, the side-coupled dot will undergo the
Kondo effect and its occupancy will be pinned to 1 for €,
below several times I',. Consequently, the “resonance” line
shape in this regime will take the form of an inverted
“Kondo plateau onset.” The evolution from the Fano reso-
nance to the Kondo plateau onset is shown in the upper left
panel in Fig. 8, while the associated level occupancy curves
are shown in the bottom left panel. (See also Fig. 3 in Ref.
54 where a similar setup is considered.)

We now finally discuss the fully interacting case, which is
the situation which is relevant for the actual experimental
configuration. The results are shown in the right panels in
Fig. 8. We find a very similar evolution in the conductance
and occupancy curves with increasing U, as in the U,;=0
case. The transition from the Fano line shape to the Kondo
plateau-edge shape occurs in this case for lower values U,,
however, and already by U,/D=0.01 we obtain conductance
curves which do not change much as U, is further increased.
This is very important since it implies that the regime of
significantly large U, occurs for rather small values of U,
therefore it is not appropriate to model the side-coupled dot
as a noninteracting impurity, since it is unlikely that the
electron-electron repulsion in two similar quantum dots
would differ by orders of the magnitude. We now face a
dilemma: assuming a noninteracting side-coupled dot, we
obtain conductance curves which appear to agree with the
experimental results (albeit we know that they correspond to
a change of occupancy by 2, in contradiction with the experi-
mental situation), while assuming an interacting side-coupled
dot, we obtain very different results which are in strong dis-
agreement with those actually observed.

In Fig. 9, we compare the temperature dependence G(7T)
with the energy-dependence of the 7=0 spectral function
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FIG. 9. (Color online) Comparison of the temperature depen-
dence of the conductance G(T) with the energy dependence of the

zero-temperature spectral function on the embedded dot Ay(w,T
=0).

A (w,T=0). As before (cf. Figure 7 and the related discus-
sion), we observe that in spite of a certain general similarity
between the curves, the differences are notable. In this case,
the differences are even qualitative: while G(T) exhibits two
ranges of logarithmic behavior (the first Kondo screening
stage from 107*<T<1072, and the second Kondo screening
stage from 10°°<T<107%), the zero-temperature spectral
function is more complex and even attains a minimum at
=2 X 107 before increasing back to its asymptotic value at
the Fermi level. This complex behavior is not reflected in the
temperature dependence of the transport properties. Addi-
tional calculations (results not shown) indicate that G(T) and
A (w,T=0) are very similar only in vicinity of the particle-
hole symmetric point, and even there only when the two
Kondo temperature scales are well separated. This should
serve as a caveat: since G(T) is a convolution of the finite-
temperature spectral function, see Eq. (6), it is not expected
that, in general, all the details of the energy dependence of
the zero-temperature spectral function will manifest as simi-
lar variations in the temperature dependence of the conduc-
tance at the related temperatures.

VI. RELATION TO THE EXPERIMENTAL RESULTS

Since the experiment is performed at finite temperatures,
the results for the zero-temperature conductance can be
very misleading in problems with very low energy scales.>!
This commonly occurs in the side-coupling geometry and
in clusters of quantum dot with weak interdot tunnel
coupling.?®2%4%31 In Fig. 10(a) we thus plot the conductance
for a range of finite temperatures, which reveals completely
different transport properties when compared with the zero-
temperature limit.

When both quantum dots are interacting and the param-
eters are set in such a way that local moments form on both
dots, there is a possibility that the Kondo screening will pro-
ceed in two steps:?7:2%-3049.315374 at higher Kondo tempera-
ture Y% the moment on the first dot will be screened, while
another stage of Kondo screening of the moment on the side-
coupled second dot occurs at another much lower energy
scale T%( (Refs. 29 and 74),
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FIG. 10. (Color online) (a) Conductance curves for the fully
interacting case with U,/D=U,/D=1, 6,=0, for a range of differ-
ent temperatures. (b) Temperature dependence of the conductance
for a range of energies of the side-coupled dot.

Ti = clT(,i exp(— cﬂ%/]eff), (15)

where c¢; and ¢, are some constants of the order 1. Such
two-stage Kondo screening occurs if the effective Kondo ex-
change coupling J; of the spin on the second dot with the
quasiparticles resulting from the first stage is lower than 7{,){.
In this case, the second Kondo scale may be pushed to ex-
ponentially low-temperature Tf(. The exchange coupling

27 27
+
e,—€;+U,

Jeir = (16)

e,—€,+U;
depends on the value of €, and decreases as €, is reduced,
attaining its minimum for €,=3J;—U,/2. In turn, this implies
that T f( becomes very low for small €, thus at the experi-
mentally relevant temperatures the second stage of Kondo
screening does not occur, the conductance suppression does
not arise and the conductance curve takes a form similar to
that of the Fano resonance. In experiments, the temperature
is roughly one order of the magnitude lower than the Kondo
temperature; for chosen t/D=0.001, we indeed find that for
T/D=10"= 0.17?(, the conductance form takes the form of a
nearly symmetric antiresonance, in agreement with the ex-
periment. The minimum of the antiresonance is located at
lower value of E=¢,/I", as compared to the noninteracting
case (where it is found exactly at E=0), since the physical
mechanism for its occurrence is completely different: in the
noninteracting case we observe a complete suppression of the
conductance due to quantum interference between different
conductance pathways, while in the interacting case the in-
complete suppression results from the separation of the en-
ergy scales Ty and Ty with the experimental temperature set
on an intermediate scale so that T% < T<T%. The shift from
E=0 is not observable experimentally, since the exact value
of the parameter €, is not known: it has to be inferred indi-
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FIG. 11. (Color online) Conductance curves for the fully inter-
acting case with U,/D=U,/D=1, 6,=0, for increasing interdot tun-
neling ¢. The arrow indicates the direction of the increasing tem-
perature 7.

rectly from known gate voltages on the electrodes and the
capacitances.

If the interdot tunneling ¢ is increased so that the exchange
coupling becomes comparable or exceeds the Kondo tem-
perature, the conductance curves no longer exhibit a Fano-
like antiresonance, not even at elevated temperatures, see
Fig. 11. Instead, as E is reduced so that the side-coupled dot
becomes occupied by one electron, the two electrons (one
from each quantum dot) bind to a local singlet on the tem-
perature scale of J~ 42/ U and there are no other lower tem-
perature scales.
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The interpretation of the antiresonance in terms of a ther-
mally suppressed second-stage Kondo screening is supported
by the experimental results for the temperature dependence
of the resonant conductance (Fig. 2¢ in Ref. 35), which in-
dicate a logarithmic behavior. This temperature variation cor-
responds to the high-temperature range in Fig. 10(b). The
experimental results do not indicate any saturation of G for
the lowest experimentally accessible temperatures, however
this might simply indicate that the temperature is not suffi-
ciently below T, or that ¢ is indeed very small and thus T%( is
exponentially low. Further confirmation for the interpretation
in terms of the two-stage Kondo effect could be obtained by
also considering the temperature dependence of other param-
eters which determine the antiresonance line shape; the
variations of amplitude, width, and asymmetry parameter
should all exhibit logarithmic temperature dependence.

In addition to the thermal effects, the second stage of
Kondo screening may also be suppressed by a minute mag-
netic field such that Ti<B< 7% As it is likely that there are
always some small stray magnetic fields in the experimental
device, this provides another mechanism, which tends to pro-
duce Fano-resonance-like spectral features in the present
configuration.

VII. CONCLUSION

The transport properties of a system of two quantum dots
in the side-coupled geometry have been analyzed, focusing
on the parameter range where the occupancy of the side-
coupled dot changes as its energy crosses the Fermi level.
The resulting resonance line shapes in the conductance
curves have been comprehensively studied in various param-
eter regimes for both noninteracting and interacting quantum
dots. We find an alternative interpretation of the experimental
results from Ref. 35 which fulfils the two required condi-
tions: (1) the occupancy in the side-coupled dot changes by
one, (2) the resonance line-shape features a weakly asym-
metric Fano-like antiresonance. The proposed model takes
into account the electron-electron interaction on the side-
coupled dot, which is certainly present in the experimental
device and which has been shown in this work to be relevant
for the transport properties of the system.
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