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The convergence to the self-consistency in the dynamical mean-field theory (DMFT) calculations for models
of correlated electron systems can be significantly accelerated by using an appropriate mixing of hybridization
functions which are used as the input to the impurity solver. It is shown that the techniques and the past
experience with the mixing of input charge densities in the density-functional theory calculations are also
effective in DMFT. As an example, the increase in the computational requirements near the Mott metal-
insulator transition in the Hubbard model due to critical slowing down can be strongly reduced by using the
modified Broyden’s method to numerically solve the nonlinear self-consistency equation. Speed-up factors as
high as three were observed in practical calculations even for this relatively well-behaved problem. Further-
more, the convergence can be achieved in difficult cases where simple linear mixing is either not effective or
even leads to divergence. Unstable and metastable solutions can also be obtained. We also determine the linear
response of the system with respect to the variations in the hybridization function, which is related to the
propagation of the information between the different energy scales during the iteration.
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I. INTRODUCTION

In many transition-metal, lanthanide, and actinide com-
pounds the almost-localized d and f orbitals are partially
filled and local magnetic moments are formed at low
temperatures.’:> The competition between itinerancy and lo-
cal electron-electron correlation effects gives rise to complex
phase diagrams with different magnetic, charge ordered, and
superconducting phases.'~® Simplified tight-binding models
with short-range Coulomb interaction terms are commonly
used to study strong-correlation effects in such systems. In
the paradigmatic Hubbard model,”'* the problem is reduced
to a single-orbital description with purely on-site Coulomb
repulsion. Hubbard-type models are thought to correctly de-
scribe certain aspects of the itinerant ferromagnetism, the
metal-insulator transitions,"!" and the high-temperature
superconductivity.»'? Despite intensive research, the proper-
ties of the Hubbard model are not yet fully established. In the
limit of infinite dimensions or high lattice connectivity the
problem can be solved by the dynamical mean-field theory
(DMFT).'3-22 In this limit, the self-energy becomes purely
local and the bulk problem of correlated electrons maps ex-
actly onto a quantum impurity model with a self-consistently
defined noninteracting bath of conduction electrons. In the
DMEFT, the spatial correlations are described in a mean-field
way, however, the local quantum fluctuations are taken into
account exactly; as long as the effect under study is driven
by local physics, the results of DMFT calculations are a good
approximation for the properties of real (finite-dimensional)
materials.

In spite of the significant simplification of the full prob-
lem within the DMFT, the solution of the effective quantum
impurity problem is still challenging: it is by far the most
computationally demanding part of the calculations. Among
several impurity solvers in common use, the numerical
renormalization group (NRG) (Refs. 23-30) is distinguished
by its applicability to study the regime of very low tempera-
tures directly in the thermodynamic limit. The convergence-
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acceleration approach proposed in the following is clearly
applicable to any impurity solver that may be used to solve
the DMFT problem, however, the discussion, the implemen-
tation details, and the test results are given for the NRG.
Nevertheless, the technique can easily be adapted for other
solvers in a straightforward manner.

The input to a NRG calculation is the hybridization func-
tion I'(w) which contains information about the density of
states (DOS) of the effective medium into which the impu-
rity is embedded, while the output is an impurity spectral
function A(w), which is then used to compute the local lattice
spectral function p(w). The self-consistency is achieved
when the two become equal, i.e., A(w)=p(w) within chosen
accuracy, otherwise p(w) is used to compute new hybridiza-
tion function for the next DMFT iteration. In order to ensure
the convergence, in some situations I'(w) from two consecu-
tive iterations are linearly mixed to obtain the hybridization
function which is used as the input to the NRG. A similar
situation is well known in the field of quantum chemistry and
electronic-structure calculations, in particular, in the density-
functional theory (DFT) (Refs. 31-33) where the quantity to
be mixed is the charge density in space, n(r). In difficult
cases (metallic surfaces, heterostructures, impurities in met-
als, systems near magnetic instabilities, etc.), the simple lin-
ear mixing procedure converges too slowly (or not at all),
thus more sophisticated mixing approaches were devised.*
In these schemes, a system of nonlinear equations is solved
iteratively by quasi-Newton-Raphson procedures or similar
methods.>*-47 The solution of the system is equivalent to the
Kohn-Sham variational principle.*® Such “advanced mixing”
techniques are implemented with various degrees of sophis-
tication in all DFT packages. They are stable, easy to imple-
ment and use, and they often have very high convergence
rate.

In this paper it is shown that the techniques and the past
experience with the advanced mixing schemes in DFT cal-
culations can also be applied to DMFT calculations. The ad-
vanced mixing greatly accelerates the convergence in many
cases, for example, near the Mott metal-insulator transition,
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where the iteration converges very slowly due to critical
slowing down. It also ensures the convergence to unstable
and metastable solutions, hence it can be applied to situa-
tions with multiple coexisting solutions.

This work is structured as follows. In Sec. II the DMFT
self-consistency constraint is formulated as a sufficient con-
dition in the form of a system of equations. In Sec. III the
modified Broyden’s iterative method for solving systems of
nonlinear equations is briefly described, focusing on the
implementation with low storage requirements which is more
suitable for large-scale problems.3® In Sec. IV it is shown
how the Broyden solver is incorporated into the DMFT loop
and some further implementation details are given. In Sec. V
the convergence properties of the linear and advanced mix-
ing schemes are compared on the example of the Hubbard
model for increasing electron-electron repulsion U. In Sec.
VI the Hubbard model in external magnetic field is consid-
ered; in this case, the simple mixing is not always successful
and the use of Broyden’s method was found to be essential to
obtain rapid convergence. In Sec. VII we study the response
of the Hubbard model with respect to small variations in the
hybridization function; this response function is the equiva-
lent of the Jacobian matrix of the system of self-consistency
equations and describes the propagation of the information
between various energy scales during the DMFT iteration.
Finally, in Sec. VIII some examples of the stabilization of
otherwise unstable fixed-point solutions are discussed.

II. DMFT SELF-CONSISTENCY CONSTRAINT
AS A SYSTEM OF NONLINEAR EQUATIONS

The single-orbital Hubbard model”® for electrons on a
d-dimensional lattice

H= E ti,jczcrcj,o_ 2 Moo+ UE n;n; | (1)

(ij),o i,o i

[with n; ,=c] ¢;» and p,=u—(0/2)gusB] maps in the d
—oo 1imit'®!821 onto the single-impurity Anderson model
(SIAM) (Ref. 49)

Hgiam = €401+ Unin| + > (VioCh oy + Hec.)

k.o

+ 2 €.0CloCho (2)
k,o

with n,,:dj,d(, and n=n;+n|. The hybridization function
[ (w0)=2|Vio]*(w—€,) contains full information about
the coupling between the impurity and the effective nonin-
teracting medium. From the calculated impurity spectral
function

Aw)=- 71—TIm[G(,(a) +1i9)], (3)

where G(T(z)=(<dg;dj;)>Z is the impurity Green’s function,
one can extract the interaction self-energy 2. (w) defined
through
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where Im A (w)=I",(w) and the real part of A (w) can be
obtained via the Kramers-Kronig transformation. In practice,
the self-energy can be calculated more reliably and accu-
rately as the ratio of two correlation functions:?® the gener-
alized Green’s function F' U(z):((dgn(;;djr»z over the Green’s
function G,(z), i.e., 2 ,(w)=UF ,(w)/ G,(w). The local lattice
Green’s function is

G @) = 13 G (o) 8
k
1 1
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where pg(€) is the DOS in the noninteracting model. The
local lattice spectral function is then

o) == TIm{ G (0 + i8] (8)

The self-consistency condition'® relates the local lattice
Green’s function Gy, , and the hybridization function I, as

I y(0) =-Imlw- G5 (0)], )

Gol(@) = Gio o+ T (@), (10)

One DMFT cycle (which involves the numerical solution
of Hgay, the calculation of Gy, ,, and the determination of
the new hybridization function I",, via Eq. (9) can be consid-
ered as a functional of the input hybridization function, i.e.,

[0 = (T w)}. (11)

If the self-consistency has been established, the hybridization
function is invariant (fixed point)

Lo {05 (w)}h =T, (12)
Defining a mapping F as the difference
F(L,)=T"Tg-T,, (13)

the approach to the self-consistency clearly corresponds to
solving the system of equations

F(T',) =0, (14)

while a single DMFT step corresponds to applying F' once to
the hybridization function. Any solution of the Eq. (14) is a
possible physical state of the system since it satisfies the
self-consistency condition, albeit it is not necessarily the
ground state: solutions corresponding to unstable and meta-
stable states can also be found (see Sec. VIII). It should be
noted that Eq. (14) is highly nonlinear.
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The usual DMFT iteration with no mixing corresponds to
solving Eq. (14) by a direct iteration, which often works
since the mapping F behaves as a contraction in the vicinity
of the solution (and often even far away from it). When F is
not a contraction, however, this procedure will tend to di-
verge and more care is required. Usually it is sufficient to
take an average of two hybridization functions (the current
and the previous one)

Finput,(m) — arnew,(m) + (1 _ a)l-*inpul,(m—l)’ (15)

where a e[0:1] is the mixing parameter. It should be re-
marked that this is fully analogous to simple charge mixing
in the density-functional theory, where the charge density
from the previous iteration n°%(r) is admixed to the current
one n"*™(r) as the true input to the next DFT iteration. Un-
fortunately, there are situations where this simple linear mix-
ing approach fails even for small values of «. Furthermore,
for very small « the approach to the self-consistency be-
comes prohibitively slow. In such situations, more sophisti-
cated mixing approaches are required. In DFT, Broyden’s
method is commonly used.

III. BROYDEN’S METHOD

Let V be an N-dimensional vector and F' a mapping; the
goal is to solve the system of equations F(V)=0. The quasi-
Newton-Raphson methods are iterative techniques in which
the new approximation is given by

V(m+1) — V(m) _ [J(m)]—lF(m)’ (16)

where J is the Jacobian of the system at point V) and
F™=F(V™). The true Jacobian is unknown; a simple ap-
proximation is used for the initial Jacobian, for example, a
constant diagonal matrix

mo_1y
a b

(17)

which corresponds to simple linear mixing with a mixing
parameter « e [0:1]. The approximation is then improved by
performing rank-1 updates as the iteration proceeds. It is
more efficient to update directly the inverse of the Jacobian
B(m):_[J(m)]—l as35,37

B+ = B 4 (AVIW _ BIAFM) o AF™ | (18)
where
ym+D) _yy(m)
m) - —  ~
AV = |F(m+l) —_Fm)° (19)
F(m+]) _ F(m)
m) - —  —
AF" = |F(m+]) _ F(m)| ’ (20)

Vanderbilt and Louie have proposed a modified version of
Broyden’s method in which the information from all previ-
ous iterations is incorporated when the current Jacobian is
updated; this approach has better convergence properties and
the Jacobian converges to the true Jacobian, which is not the
case in the original Broyden’s method which only uses the
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information from the most recent iteration to perform the
update.’ Srivastava has simplified the computational scheme
so that only the input vectors V™ and output vectors F")
need to be stored, rather than the complete Jacobian matrix.’’
Johnson combined the advantages of both schemes without
any increase in complexity.’® The final expressions for this
modified Broyden’s method are as follows:

m—1 m—1
v i Gl E E wnwkc,gm)ﬂg)U(”) (21)
k=1

n=1

with
" = (AFW)TF™ (22)
U™ = aAF®™ + AV® (23)
and (m—1) X (m—1)-dimensional matrices
0 =g +A") 1, (24)
AL = i (AFO) AT o5

Here 1 is a (m—1) X (m—1)-dimensional identity matrix. The
first two terms in Eq. (21) correspond to simple linear mixing
with parameter «, as described above, while the final term is
a correction which takes into account the updates to the ini-
tial Jacobian.

The weights w,(n=1,2,...) are usually chosen to be
equal to 1, while wy=0.01.%%4 For a suitable choice of
weights, the modified Broyden’s method becomes
equivalent®** to Pulay mixing scheme*? or Anderson mixing
scheme.**

The algorithm can be simply modified to use only a finite
number of previous iterations to update the vector. This may
be advantageous when the initial approximation for the vec-
tor is not very good. Alternatively, the Broyden mixing can
be fully restarted after a given number of iterations.

IV. INCORPORATION OF THE BROYDEN SOLVER
INTO THE DMFT LOOP

In the proposed convergence acceleration scheme for
DMFT, the modified Broyden’s method is used to refine the
hybridization function I'(w) which is used as the input to the
impurity solver. It should be remarked that this is not the
only possibility: alternatively, one could also mix the self-
energy 2 (w). The choice depends somewhat on the problem
and for numerical reasons one should in extreme cases pref-
erably choose the quantity which is smoother as a function of
the energy (for example, near the Mott transition on the me-
tallic side the self-energy features sharp peaks while the hy-
bridization function is rather smooth, whereas in the antifer-
romagnetic phase with small U the hybridization function
contains sharp inverse-square-root singularities while the
self-energy is relatively smooth). In general, however, the
two approaches are expected to be nearly equivalent.

The Broyden solver is called just before the NRG, see
Fig. 1. In a sense, the Broyden solver is effectively driving
the DMFT loop in order to solve the equation
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FIG. 1. (Color online) The DMFT loop using the numerical
renormalization group as the impurity solver. The Broyden solver is
incorporated in the loop as a correction step which modifies the
input hybridization function in order to accelerate the convergence
to the self-consistency. The new elements in the loop are shown in
gray (red online).

F{Finpm’(m)} _ r(m+l){1—'input,(m)} — Tinput,(m) _ 0, (26)

see also Egs. (13) and (14). One cycle of the loop thus cor-
responds to applying once the mapping F to the hybridiza-
tion function.

The vector V™ corresponds to a discretized representa-
tion of the continuous function I'(w). In the calculations pre-
sented in this work, we used a geometric sequence of points
0+ ;= Q0" with O, that exceeds the band width of the
noninteracting band by a factor of order 10 and /=1.01; the
dimension of the vectors was N=3982 (and twice as large for
spin-dependent problems). The same grid is used to sample
all other functions, in particular the impurity spectral func-
tion A(w) and the self-energy 3(w). The Jacobian matrix in
the Broyden solver was typically initialized with a=1. The
weights were chosen as wy=0.01 and w, =1 for n=1; setting
wy to zero was found to have little effect. It has been sug-
gested that the weights w, be chosen as w,=(F"|F")=12,
i.e., as the inverse root-mean-square difference of the
function.?® Numerical tests have shown that the improvement
is only minor, if at all existing.

During the initial steps it sometimes occurs that the result-
ing ['"P"(w) is not positive for all  as the solver is over-
compensating for the deviations. In such cases, the function
was simply clipped to positive values. When the error vec-
tors AF become smaller as the iteration proceeds, this is no
longer a problem. The clipping performed during the initial
iterations does not affect the final result. An alternative solu-
tion would be to revert to simple linear mixing in such in-
stances. Yet another possible approach to enforce positivity
of I" would consist of working with Inl" instead. Unfortu-
nately, this method was found to slow down the convergence
significantly.

It is necessary to store both I'(w) and T'"P"(")() for
all Nge,s DMFT steps, thus the additional storage require-
ments are on the order of N X N, which is not likely to
pose difficulty.

In calculations with fixed occupancy (rather than fixed
chemical potential) it is important to store as an additional
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component of the vector V also the chemical potential w that
is being tuned. (This is actually true in general: all param-
eters varied in the iteration should appear in the Broyden
process, so that the output of a single iteration is a smooth
and uniquely defined function of the input vector V alone.*’)
In fact, the tuning of the parameter u can be integrated in the
Broyden solver with much fruition. This can be simply
implemented by extending the dimensions of vectors V and
F by one. In the additional element of V we store the chemi-
cal potential at the current iteration, while the additional el-
ement of F can be defined as c((n)—rg,), Where c is some
coefficient related to charge stiffness (but in practice it can
usually be set to 1, since Broyden mixing will find an appro-
priate scale factor automatically as the iteration proceeds),
(n) is the occupancy at the current DMFT iteration, while
Ngoq 18 the target occupancy that we seek to stabilize. The
additional element in the new input vector V") will then
contain the chemical potential to be used in the new impurity
solver step.

In the NRG calculations performed for testing the method
and presented in the following, the z averaging>=2 over N,
=8 values of the twist parameter was used in combination
with an improved discretization scheme based on solving a
differential equation to obtain the discretization
coefficients.’>>*The discretization parameter was A=2, the
truncation cutoff was set to E = 10wy (but no less than
500 and no more than 10000 states were used) and care was
taken to truncate in a “gap” between clustered excitation lev-
els. Spectral functions were computed using the density-
matrix approach® and the self-energy trick.”® Spectral infor-
mation was extracted from both even and odd NRG
iterations with a window parameter p=2.3.33 The broadening
procedure from Ref. 56 with «=0.1 was used. The choice of
NRG parameters appears to be important for the conver-
gence: high-quality (smooth) results tend to be beneficial for
the rate of convergence, while “rough” calculations some-
times lead to a stagnation of the convergence and oscillatory
behavior. This is related to the assumption of differentiability
of the mapping F. For the same reason, the calculations per-
formed with larger broadening parameter will converge
faster than high-energy-resolution calculations with much
smaller broadening parameter. This is especially true when
the hybridization function contains sharp features.

The DMFT loop is terminated when two consecutive im-
purity spectral functions A(w) differ by no more than some
chosen value:

f A" (@) = A" w)|dw = . (27)

In practice it is found that this convergence test is more
stringent when compared to an equivalent test for consecu-
tive local lattice spectral functions p(w), while comparing
A(w) and p(w) at the same iteration gives absolute integrated
errors somewhere between these two convergence tests. A
typical convergence limit is A=107°.

The stability of the converged solution can be tested by
performing a few further DMFT iterations with the Broyden
mixing turned off. From the solutions one can extract the
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FIG. 2. (Color online) Comparison of the convergence of the
impurity spectral function A(w) in a calculation for the Hubbard
model defined on the Bethe lattice in the paramagnetic phase at
half-filling. We compare the simple mixing (here a=1, i.e., the
output from the previous iteration is used directly as the input for
the new iteration, so this is actually direct iteration rather than mix-
ing) and Broyden’s mixing. The inset shows the converged density
of states.

dominant eigenvalue and eigenvector of the mapping F. This
information is instrumental in assessing the physical stability
of the solution and to determine the type of eventual insta-
bility. We return to these considerations in Sec. VIIL

V. ACCELERATION OF THE CONVERGENCE

The acceleration of the convergence of the DMFT loop
toward self-consistency was explored on the well-studied
case of the Hubbard model at half-filling («=0) in the para-
magnetic regime,'6-19:2226.2729.2157 We gstudy the Hubbard
model on the Bethe lattice with infinite coordination number
where

pole) = %}V”I - (2eW)>. (28)

Here W is the width of the noninteracting conduction band.
As the electron-electron repulsion U is increased, the char-
acteristic three-peak structure emerges: two Hubbard bands
and a quasiparticle peak at the Fermi level. As U approaches
a critical value of U./W=1.46, the quasiparticle peak be-
comes increasingly narrow and disappears.!62027:57 Recent
high-energy-resolution calculations have confirmed that the
Hubbard bands have inner structure, in particular a peak at
the inner edges;>>% this structure can be observed, for ex-
ample, in the inset in Fig. 2.

In Fig. 2 we compare the approach to the self-consistency
for the Hubbard model at fixed U/W=1.2. The initial ap-
proximation for the local spectral function was the noninter-
acting DOS py(w). Initially, both approaches are equivalent,
since the starting approximation for the Jacobian is a diago-
nal matrix which corresponds to simple mixing. Since py(w)
is a rather crude approximation to the real density of states,
Broyden’s method is not expected to work much better than
simple mixing for the first few steps; indeed, the errors are
found to be even slightly higher. As can be seen in Fig. 3, the
nonlinear Broyden corrections are initially especially large in
the region of the emerging Hubbard bands, while at later
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FIG. 3. The Broyden corrections for consecutive iterations; the
curves are offset for clarity. The parameters are as in Fig. 2.

iterations the most important contributions are to the inner-
edge peaks in the Hubbard bands. Starting with iteration 9,
the approximation to the self-consistent hybridization func-
tion becomes quite adequate, the updates to the Jacobian
correspond to accurate refinements and the convergence ac-
celerates significantly. Both methods converge linearly, how-
ever, the rate of convergence is much faster with Broyden’s
method. Superlinear convergence was never observed in
practice. The linear rate of convergence in the example
shown in Fig. 2 was pu=0.15. When required, extremely
good accuracy of the solution can thus be obtained with es-
sentially no additional computational effort as compared to
the direct iteration.

We also determined the speed-up due to using the modi-
fied Broyden’s method as a function of the interaction
strength U, Fig. 4. As the Mott metal-insulator transition is
approached from below, the convergence becomes more dif-
ficult to achieve, which can be assigned to critical slowing
down in the vicinity of quantum phase transitions.2”-600!
Both approaches are affected by this difficulty, however, it is
found that the relative speed up in Broyden’s method is an
increasing function of U; for the range of parameter U con-
sidered in this work, the speed up was up to a factor of 3 and
it presumably increases even further for U— U.. It should be
remarked that in these calculations it was possible to use «
=1 (in other words, the direct DMFT iteration converges
without any mixing), which is the most favorable situation.
In problems where mixing with small « is necessary, the
speed-up factor is expected to be much higher.

100 U -4

oo simple
80 =2 Broyden

60

40

Number of iterations

20

u/w

FIG. 4. (Color online) Comparison of the convergence as a
function of the interaction strength U/W. The convergence is de-
fined to occur when two consecutive solutions for the density of
states differ by not more than A=107° (integrated absolute value of
the difference). The vertical dashed line corresponds to the point of
the Mott metal-insulator transition at U,/ W=1.46.
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FIG. 5. (Color online) Majority-spin spectral functions for the
half-filled Hubbard model in a magnetic field. The arrows show the
direction of the increasing magnetic field.

By performing calculation in the close vicinity of the
Mott transition on the metallic side, we obtained an im-
proved estimate of the critical value of U

UJW = 1.459. (29)

It agrees very well with previous NRG calculations, where
U./W=1.47 was established,”” and even better with the
value obtained using projective self-consistent approach,
U,/ W=1.46.1657

VI. HUBBARD MODEL IN THE MAGNETIC FIELD

The Hubbard model in a strong magnetic field®>* has
a metamagnetic response in a certain parameter regime: the
magnetic  susceptibility  increases with the field
strength.!0-62:64-66 The metamagnetic response is due to
electron-electron interactions and, for sufficiently large U, it
is driven mostly by field-induced quasiparticle mass en-
hancement (i.e., field-induced localization), however, quasi-
particle interactions also play a role.®

We consider the Hubbard model at half-filling and at zero
temperature in a magnetic field. This problem is interesting
for several reasons: (1) it is found that a DMFT iteration with
simple mixing (and taking the noninteracting DOS as an ini-
tial approximation) does not always converge in the presence
of the magnetic field; (2) the structure at the inner edge of the
Hubbard band might be of magnetic origin, thus it can have
nontrivial behavior in a finite magnetic field;>>%° and (3)
the behavior near the threshold to full polarization is not
fully understood due to numerical difficulties in the transi-
tion regime.%

The calculated spectral functions are presented in Fig. 5.
The results agree with those shown in Ref. 66, however, the
energy resolution in our approach is sufficiently higher so
that the inner structure in the Hubbard bands may be
resolved.”® As already established, when the magnetic field is
increased the quasiparticle peak shifts away from the Fermi
level and it narrows down, and the spectral weight is gradu-
ally transferred to the lower Hubbard band of the majority
spin.®® With improved resolution, we can now also observe
that the internal structure of the Hubbard bands changes sig-
nificantly with increasing field. When the magnetic field is
increased past a transition value B, a field-induced metal-
insulator transition is induced.®
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For a system in the metallic regime, the Broyden’s
method converged rapidly, even when the noninteracting
DOS was taken as the initial approximation, while linear
mixing usually led to oscillatory behavior. As in the Mott
metal-insulator transition, the number of necessary iterations
increases as the transition point is approached. On the insu-
lating side, the convergence to the fully polarized solution
was rapid for large fields, however, the calculations in the
vicinity of the transition point were more difficult and it was
necessary to initialize the problem with the fully polarized
insulating spectral functions to ensure the convergence. The
difficulties appear to stem from the fact that the noninteract-
ing DOS for the Bethe lattice has square-root singularities at
the band edges, while the Broyden method is premised on
the differentiability of the mapping F.

The inner structure in the Hubbard bands remains present
even in the presence of the magnetic field, see Fig. 5. With
increasing field, the lower Hubbard band of the majority-spin
electrons becomes increasingly featureless and the inner-
edge peak tends to disappear as we approach the transition to
the insulating phase. The upper Hubbard band, however, ap-
pears to become more structured and distinctively asymmet-
ric. Even at low fields there is some hint of further weak
peaks within this band, which become more pronounced in
the vicinity of the transition. In this regime, the electrons are
already strongly polarized, thus majority-spin electrons in
the upper Hubbard band cannot easily propagate since they
reside on doubly occupied sites surrounded predominantly
by a ferromagnetic background, thus their motion is strongly
hindered by the Pauli exclusion principle and they become
increasingly localized. This is to be contrasted with the holes
in the lower Hubbard band which can easily propagate and
do not feel the strong electron-electron interactions.

VII. RESPONSE WITH RESPECT TO THE VARIATION
IN THE INPUT HYBRIDIZATION FUNCTION

Finding a good initial approximation to the Jacobian is
not trivial, therefore a simple diagonal constant matrix is
typically used, as in Eq. (17). In band-structure calculations,
the Jacobian is related to the dielectric tensor,>**7*% which
makes it possible to devise an improved initial approxima-
tion for the Jacobian based on the Thomas-Fermi screening
theory (this procedure is called “preconditioning”).3437:4346
The Jacobian for the hybridization function in the DMFT
loop is not related to some well-understood physical quantity
in a simple way [see, however, the discussion of the Landau-
Ginzburg (LG) functional F|g of the hybridization function
discussed in Ref. 67 which is related to the self-consistency
equation F(I')=0]. We may, however, study the properties of
the Jacobian in the vicinity of the self-consistent solution
I'*(w) by performing calculations with slightly perturbed in-
put hybridization functions:

. e? 24 2
() =I*(w) +a”=e 0T, (30)

/

NTT

The perturbation takes the form of a log-Gaussian function
centered at the energy E and of width b, similar to the com-
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FIG. 6. (Color online) The response function Rg(w) for the Hub-
bard model for the excitation energy E/W=0.2 (graphically repre-
sented as the vertical dashed line). Model parameters are the same
as in Fig. 2.

monly used broadening kernel for producing smooth spectral
functions in NRG (although the normalization factor
differs).?” The weight a should be chosen small enough so
that the response function

Ri(w) = T () = ()] 61
no longer depends on the value of a, but it must be large
enough to prevent numerical artifacts. The width b should
likewise be as small as possible, although its value is ulti-
mately limited by the NRG broadening which restrains the
energy resolution in I"""""(w). The calculations were per-
formed for a=0.001 and 5=0.05.

An example of the response function for the Hubbard
model with intermediately strong interaction U/W=1.2 is
shown in Fig. 6. It reveals that a variation at a given excita-
tion energy E can lead to a complex response at all energies.
[However Rg(w) vanishes in the w—0 limit.'®] In simple
linear mixing there is no exchange of information between
different energies (“crosstalk”), thus it takes many DMFT
iterations for reaching the self-consistency after a change has
been imposed. In the Broyden mixing, the application of the
(approximate) Jacobian effectively mixes the hybridization
function at different energies, thereby accelerating the propa-
gation of the information.

VIII. UNSTABLE AND METASTABLE FIXED POINTS

The concept of self-consistency is inseparably related to
the concept of iteration; this is directly implied by the form
of the self-consistency Eq. (12). For this reason, the stability
of the solutions (fixed points) is related to the eigenspectrum
of the DMFT transformation, i.e., of the mapping F. Direct
iteration can only be convergent if all the eigenvalues \; of
the linearization of F in the vicinity of the fixed point are
strictly less than 1 in absolute value, while it will diverge
when one or several eigenvalues are larger than one in abso-
lute value, unless the solution space is constrained in such a
way that the initial approximation for the solution has no
components along the directions of the corresponding eigen-
vectors. For linear mixing with parameter a e[0:1] (note
that a=1 corresponds to direct iteration), the convergence
criterium becomes®*

PHYSICAL REVIEW B 80, 125125 (2009)
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FIG. 7. (Color online) Evolution of the paramagnetic solution
for the half-filled Hubbard model after switching off the Broyden
mixing. (a) Initial paramagnetic spectral function. (b) Resulting an-
tiferromagnetic spin-dependent spectral functions. (c) Magnetiza-
tion and (d) convergence as a function of the number of iterations.
(e) Difference between the spectral functions at iteration 9 and the
initial spectral function indicating the progressive breaking of the
spin symmetry.

1-a(l-\)[<1. (32)
We denote by A\, and A\, the maximal and minimal eigen-
value. If N\, <1 and \;,>—1, the direct iteration with «
=1 will converge. If \,, <1 and \;,=-1, @ should be «
<2/(1=Np,)- Finally, if \,,>1 the inequality Eq. (32)
cannot be satisfied for any a € [0:1] and the linear mixing is
of no help, thus the use of advanced mixing schemes be-
comes mandatory.

As an example of a well-understood unstable solution, let
us consider the instability of the paramagnetic solution of the
Hubbard model at half-filling toward an antiferromagneti-
cally ordered Néel ground state.'$21:986% Using Broyden’s
method, the paramagnetic (PM) solution can be stabilized in
a calculation which in principle allows a symmetry broken
state. The system drifts away, however, from the PM fixed
point as soon as the Broyden mixing is turned off and even-
tually it converges to an antiferromagnetic (AFM) solution,
as illustrated in Fig. 7. The calculation was seeded with a
previously obtained self-consistent PM solution and iterated
further without Broyden solver. The magnetization immedi-
ately starts to increase [Fig. 7(c)] and by the tenth iteration
the spectral functions develop a narrow but sizeable singu-
larity structure (emerging spectral gap) in the quasiparticle
peak, while the Hubbard bands start to become spin polar-
ized [Fig. 7(e)]. After 32 iterations, the result converged
within 7=10"° to a stable self-consistent AFM solution
shown in Fig. 7(b).

It should be recalled that in a calculation where the SU(2)
symmetry in spin space is explicitly maintained, the PM so-
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FIG. 8. Evolution of the solution for the Hubbard model at
half-filling in an external magnetic field after switching off the
Broyden mixing. (a) Magnetization as a function of the number of
iterations, (b) ratio between the differences of consecutive hybrid-
ization functions, which provides an estimate for the dominant ei-
genvalue A ~-3.3 for B/ W=0.02.

lution is stable and the mapping F is a contraction, as shown
in Sec. V. The eigenspectrum of the mapping F is not only a
property of the physical model under consideration, but it
also depends on the type of the long-range order allowed for
in the DMFT equations, and to some degree even on the
impurity solver used and on other details of the calculation
(spectral broadening, discretization parameter, number of
states kept, etc.).

Another situation commonly encountered after switching
off the Broyden mixing is the emergence of oscillatory solu-
tions which never converge. This behavior can be observed
for the Hubbard model at half-filling in a magnetic field (see
Sec. VI). The polarized fixed-point solution are found to be
unstable and lead to oscillations between two almost fully
spin-polarized (in the opposite directions) spectral functions,
see Fig. 8(a). The instability can be traced to a dominant
eigenvalue of A ~-3.3<-1 (for example, in Fig. 8), as ex-
tracted from the ratio of differences between consecutive hy-
bridization functions in the vicinity of the fixed point, Fig.
8(b). This solution could thus be stabilized using linear mix-
ing with @<<0.23. It should be remarked that the solution
was found to be unstable for all magnetic fields that yield a
spin-polarized metallic solution, not only for weak fields
where the system is known to be unstable toward the AFM
solution. If the instability of the fixed point is a true physical

PHYSICAL REVIEW B 80, 125125 (2009)

instability also for large magnetic fields, its nature is not very
clear; it might correspond to canted ferromagnetism, a ten-
dency toward formation of spin-density waves, or some other
kind of incommensurate order.”’ Since such states cannot be
described by the formalism used, the iteration cannot con-
verge.

Since the fixed points I'* of the self-consistency equation
F(I'*)=0 are generally stationary points, rather than
extrema,®”’! it will be interesting to further clarify the rela-
tions between the stability of the DMFT iteration and the
physical stability of the solution, as well as their relation to
the eigenspectra of the mapping F in the vicinity of the so-
lutions. As demonstrated, the proposed mixing technique can
be a valuable tool for numerical studies of these questions,
since it allows in principle to obtain all self-consistent solu-
tions and (by turning the mixing off) to analyze the nature of
their possible instabilities.

IX. CONCLUSION

It has been shown that the approach to the self-
consistency can be greatly accelerated by reformulating the
DMEFT loop as an iterative method for solving a nonlinear
self-consistency equation using quasi-Newton-Raphson
methods. The tests performed for the paradigmatic case of
the Hubbard model at half-filling have shown that Broyden’s
method significantly outperforms simple linear mixing. The
approach is fully general and it can be also applied when any
other impurity solver (such as, for example, exact diagonal-
ization, DMRG, or quantum Monte Carlo) is used; it appears
likely that similar speed-up factors could be achieved on
equivalent problems. For particularly pathological situations,
the improvement might be sufficient to bring previously for-
bidding problems within reach. This is particularly important
near quantum phase transitions, where reaching the conver-
gence becomes problematic due to critical slowing down and
the detailed behavior at the transition points is still a matter
of controversy for many important problems. The accelera-
tion due to the use of Broyden’s method might be instrumen-
tal in answering some of these long-standing questions. In
addition, the solver can be used to stabilize unstable fixed-
point solutions and to study their properties. Since the solver
is robust, easy to implement and to incorporate in the DMFT
cycle, there is little reason not to use it.
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