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The ground-state energy of a quantum impurity model can be calculated using the numerical renormalization
group with a modified discretization scheme, with sufficient accuracy to reliably extract physical information
about the system. The approach is applied to study binding of magnetic adsorbates modeled by the Anderson-
Newns model for chemisorption on metal surfaces. The correlation energy is largest in the valence-fluctuation
regime; in the strong-coupling �Kondo� regime the Kondo-singlet formation energy is found to be only a minor
contribution. As an application of the method to more difficult surface-science problems, we study the binding
energy of a magnetic atom adsorbed near a step edge on a surface with a strongly modulated surface-state
electron density. The zero-temperature magnetic susceptibility is determined from the field dependence of the
binding energy, thereby providing an independent result for the Kondo temperature TK, which agrees very well
with the TK extracted from a thermodynamic calculation.
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The magnetism of nanoscopic objects supported on sur-
faces is of great current interest due to possible applications
in the ultradense data storage. The magnetic properties of
adsorbates can now be studied on the single-atom level using
scanning tunneling microscopes �STM� �Ref. 1�. Adsorbed
atoms attach to metal surfaces by forming strong �covalent�
bonds in a process named chemisorption.2,3 The chemisorp-
tion controls the valence �and thus the magnetic moment� of
magnetic adsorbates, it can lead to adsorbate-induced re-
structuring of surfaces, it affects superlattice growth, chemi-
cal reactions �catalysis�, and other surface phenomena.3 Us-
ing an STM, adsorbed atoms may be manipulated to form
artificial nanostructures.4 For successful manipulation of
atomic-scale objects, it is crucial to understand the binding
properties of adsorbates, i.e., to know the potential-energy
surface as a function of the position of the adsorbate.2

A highly simplified model for studying the chemisorption
is the Anderson-Newns model:5,6 H=Hband+Himp+Hc with

Hband = �
k,���↑,↓�

�kck�
† ck�,

Himp = �
���↑,↓�

�n� + Un↑n↓,

Hhyb = �
k,���↑,↓�

Vk�ck�
† d� + d�

†ck�� . �1�

Hband describes the continuum of conduction-band electrons
with dispersion �k, Himp corresponds to an adsorbate level
with energy �, and electron-electron repulsion U �n�=d�

†d� is
the level occupancy operator�, while Hhyb defines the hybrid-
ization which can be fully characterized by the function
����=�k�Vk�2���−�k�. The adsorbate binding energy �E is
defined as the difference between the ground-state energy of
the system described by the full Hamiltonian H and the
ground-state energy of the decoupled system with Hhyb�0
�i.e., the limit where the atom is far away from the surface�.
While the Anderson-Newns model was originally intended to

describe binding of hydrogen and alkali atoms, some prop-
erties of magnetic adsorbates can also be studied within a
single-orbital approximation.7 General binding properties
can be determined qualitatively correctly using the unre-
stricted Hartree-Fock �HF� method,6 while the contributions
due to correlations can be calculated variationally.8 A method
which could very accurately solve the problem in full gener-
ality for arbitrary energy-dependent ���� and for arbitrarily
large interaction strength U has been, however, lacking. In
this work, it is shown that the binding energy can be calcu-
lated with an excellent accuracy using the numerical renor-
malization group �NRG� �Refs. 9–11�.

The NRG consists of a logarithmic discretization of Hband
into intervals ��−�j+1� :�−j	 with �	1 followed by a map-
ping to an effective one-dimensional tight-binding Hamil-
tonian with exponentially decreasing hopping constants

�−i/2 and an iterative diagonalization, where one further
site is taken into account at each step. At each iteration i, the
calculated excitation spectrum is shifted by subtracting the
lowest eigenvalue Ei from all others. The series

ENRG = �
i=0

�

Ei �2�

is the ground-state energy of the effective Hamiltonian. To
improve the results, several independent NRG calculations
are performed for interleaved discretization meshes shifted
by �1−z with z� �0:1	 and the final result is obtained as an
average over all z �Refs. 12 and 13�. To the best knowledge
of the author, the quantity ENRG has never been used to ex-
tract physical information about the system, presumably, due
to poor convergence properties and systematic errors of the
conventional discretization scheme. These deficiencies of
NRG were recently surmounted by a different discretization
approach14,15 which consists of solving the differential equa-
tion
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dE�x�
dx

=



��x�

��x+1�

����d�

��E�x�	
, �3�

where the function E�x� with x= j+z yields the discretization
coefficients for each interval j and each parameter z; the
function ��x� defines the discretization grid.15

We first consider the binding of a noninteracting adsor-
bate with U=0. In this case, the binding energy can be cal-
culated numerically to arbitrary precision by a simple
quadrature �Eq. �39� in Ref. 6	. For simplicity, we first con-
sider a constant hybridization function ������ for ��
�−1:1	 and zero otherwise. By comparing the NRG results
with the exact value for a range of discretization parameters
� �Fig. 1�, we find that the binding energies are calculated
with high accuracy even at �=12; for �=2 the error is
2�10−7. If bare model parameters �bandwidth, �, and U� are
on the order of the eV, this magnitude of the error implies
that it is possible to determine the binding energy with 
eV
accuracy. The spread of the results �ENRG�z� for different
values of z, as measured by the standard deviation ��E in
Fig. 1, is not an indication of the error committed but rather
contains physically relevant information about the effects of
the hybridization. The z averaging is thus an essential ele-
ment of the binding-energy calculation and not merely an
ad hoc procedure to accelerate the convergence.

At large �, the error can be decreased somewhat by in-
creasing Nz, but the improvement is minor. A systematic im-
provement by 1 order of the magnitude can, however, be
obtained by the interpolation between the data points fol-
lowed by an integration over z on the interval �0:1	. The
error is thereby reduced to 3�10−7 even at �=12 with no
additional calculations. �There is actually no need to use a
uniform mesh of parameters z; it is more economical to

choose the z values as the quadrature nodes.� Using conven-
tional discretization schemes, the errors are larger by orders
of magnitude and even the extrapolated �→1 value dis-
agrees with the exact result by 3�10−4; this corresponds to
an error on the order of meV, which is barely acceptable
especially when small effects are considered, for example, in
possible applications to long-range adsorbate-adsorbate
interactions.16 The use of the improved discretization scheme
from Ref. 14 is thus crucial and, furthermore, the possibility
of obtaining reasonably accurate results even at large � im-
plies that calculations can be performed very efficiently.

For large hybridization �, the adsorbate perturbs the con-
ductance band more strongly. In NRG calculations, this is of
particular concern since a finite representation of the band is
used; thus finite-size effects are expected to become sizable.
We find, however, that at �=2 the error is bounded by
1.7�10−6 for all � in the interval �0:0.4	 �Fig. 2�. The bind-
ing energy �E is linear in � to a good approximation and the
coefficient of proportionality increases in absolute value as �
approaches the Fermi level �see the inset in Fig. 2�, where
the hybridization is more effective in binding the adsorbate.
The adsorbate tends to form a bond with the substrate by
sharing an electron with the conductance-band states. This
process is more efficient when states in the vicinity of the
Fermi level are involved since their occupancy can be inex-
pensively changed by the hybridization. This is similar to
bond formation in two-atom molecules, where the binding
energy is largest when the atomic levels are aligned.

We now study the full Anderson-Newns model with finite
interaction U and make comparison with the mean-field re-
sults obtained using the unrestricted HF method �which ne-
glects correlation effects �see also Ref. 8�	. The binding en-
ergy reaches its highest absolute value for �+U=0 when the
single-particle level for an additional electron crosses the
Fermi level �Fig. 3�a�	. This behavior is similar to that of the
noninteracting model. The binding energy is large when the
charge fluctuates strongly. Both NRG and Hartree-Fock give
the same qualitative features, but it is found that HF under-
estimates binding. The additional binding energy can be de-
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FIG. 1. �Color online� � dependence of the calculated binding
energy of a noninteracting adsorbate. Exact binding energy �Eexact

is subtracted from the numerical results �ENRG��� �circles�. Full
line is a linear fit to results in the interval �� �1.6:2	. The error of
the extrapolated �→1 value is 3.3�10−9. The standard deviation
��E characterizes the spread of the results for different parameters
z. An example of �ENRG�z� for �=12 is shown in the inset.
Nz=32 different values of z were used, while the parameter
Ecutoff=10�N defines the truncation cutoff in the NRG iteration
�Ref. 14�.
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FIG. 2. �Color online� Binding energy �E �right vertical axis�
and numerical error �ENRG−�Eexact �left vertical axis� of a nonin-
teracting adsorbate as a function of the hybridization �. The pro-
portionality coefficient �E /�=−0.70 is extracted in the interval
�� �0:0.01	. For reference, the inset shows �E /� as a function of
�.
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fined as the “correlation energy:” Ec=�E−�EHF. The corre-
lation energy is largest in the valence-fluctuation regime for
�+U�� �see Fig. 3�b�	. At this point, the local moment
begins to form �see the decreasing charge fluctuations �n2 in
Fig. 3�c� for increasing U	 and the energy scale of magnetic
correlations �the nascent Kondo regime� is the highest �see
the Kondo temperature TK in Fig. 3�b�	. The “Kondo-singlet
formation energy” on the order of TK does not account for
the totality of the correlation energy. It is only a small frac-
tion, in particular, in the large-U limit where the Kondo tem-
perature is strongly suppressed. The most important contri-
bution to the correlation energy thus stems from local charge
correlations rather than from extended Kondo correlations.

The energy gain due to Kondo correlations is lost in a
strong magnetic field �see Fig. 4�. The quadratic reduction
for low fields �g
BB�kBTK� is expected due to finite spin

susceptibility at zero temperature in the strong-coupling
regime.9 From the prefactor, we can extract the zero-
temperature magnetic susceptibility

��T = 0� =
W�g
B�2

4�kBTK
, �4�

where W�1.290 26 is the Wilson number.9,17 From
��T=0�, we then obtain a value TK� =1.43�10−4 for the
Kondo temperature, which differs from the value of
TK=1.46�10−4 determined in a thermodynamic calculation
of magnetic susceptibility by �3%. Considering that the val-
ues are obtained using entirely independent procedures, their
close agreement is an exceptional confirmation of the
method. The remaining small discrepancy stems mostly from
the error associated with obtaining the coefficient of the B2

contribution to the total energy in the limit of very small
magnetic fields. For large fields �g
BB�kBTK�, the Zeeman
effect takes over and the variation in �E is approximately
linear.

Albeit constant hybridization is a convenient simplifica-
tion, in realistic problems ���� is strongly energy dependent.
Three forms are considered here: sharp- and rounded-step
functions and an oscillatory function. The convergence with
� depends significantly on the form �see Fig. 5�; while the
error remains approximately constant at �10−6 for the
rounded-step function, it increases significantly for the
sharp-step and oscillatory function. As expected, sharp dis-
continuities and variations that occur over extended energy
intervals lead to larger errors than smooth localized changes.

The capabilities of the method for problems with strongly
energy-dependent hybridization are demonstrated with the
example of a magnetic adsorbate in the vicinity of a
step edge on a surface supporting a surface-state band.
The adsorbate hybridizes both with the bulk states via �b
�which will be assumed not to vary with energy� and
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with surface states via �s. On a clean flat surface,
����=�b+�s���−�0�, where �0 is the onset of the surface-
state band. More interesting situation occurs when the adsor-
bate is adsorbed near a step edge, where the local density of
states of surface-state electrons is modulated by standing
waves. Modeling the step edge as a hard-wall potential, the
energy-resolved charge density is �n�x ,��
1−J0�2k���x	,
where J0 is the Bessel function, k��� is the wave number at
energy �, and x is the distance from the step edge. Modeling
the surface-state electrons as free electrons with effective
mass m�, we have k���= ��2m� /����−�0�	1/2. The hybrid-
ization function is thus

���� = �b + �s��� − �0��1 − J0�2k���x	� . �5�

While it is by now established that for magnetic impurities
on noble-metal surfaces �s��b �Refs. 18 and 19�, we will
nevertheless take a greatly exaggerated ratio �s /�b=1 to ac-
centuate the effect of the energy dependence of ����. In fact,
on surfaces with giant Friedel oscillations,20 such ratio might
be realistic.

The adsorbate properties reflect the oscillatory features in
���� �see Fig. 6�. The Kondo temperature is strongly corre-
lated with the variation in � at the Fermi level and it can be
well described by a cosine function with constant phase shift
�TK

multiplied by some envelope function which is—to a
good approximation—a power-law decay 1 /x1.16. The bind-
ing energy, however, exhibits some additional structure, in
particular, for low values of x. �This is not a numerical arti-
fact: the same result is obtained for other choices of NRG
parameters.� Qualitatively, similar features are visible in the
adsorbate level occupancy �n
 but at shifted positions x. The
origin of these effects is thus in the details of the energy
dependence of ���� over a wide energy interval �i.e., on the
atomic scale of � and U�. This is unlike the Kondo tempera-
ture, which depends mostly on the values of ���� in the
narrow interval on the scale of TK itself and therefore simply
follows the variation in ���=0�. It may be noted that strong
binding corresponds to high Kondo temperature and that
variations in �E and TK are on the same order of magnitude,

pointing to a large effect of magnetic correlation in this situ-
ation.

The NRG method is a very capable tool for studying cor-
relation effects in magnetic adsorbates on surfaces. The dem-
onstrated favorable scaling of errors with � brings more re-
alistic �multiorbital� models within the reach of modern
computing facilities. The technique for calculating ground-
state energies is very general and it can be, for example,
applied to calculate the response of the system �expectation
values and susceptibilities� with respect to arbitrary pertur-
bations.
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