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We study the low-temperature transport properties of systems of parallel quantum dots described by the
N-impurity Anderson model. We calculate the quasiparticle scattering phase shifts, spectral functions, and
correlations as a function of the gate voltage for N up to 5. For any N, the conductance at the particle-hole
symmetric point is unitary. For N�2, a transition from ferromagnetic to antiferromagnetic impurity spin
correlations occurs at some gate voltage. For N�3, there is an additional transition due to an abrupt change in
average impurity occupancy. For odd N, the conductance is discontinuous through both quantum phase tran-
sitions, while for even N only the magnetic transition affects the conductance. Similar effects should be
experimentally observable in systems of quantum dots with ferromagnetic conduction-band-mediated interdot
exchange interactions.
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Parallel double quantum dots in semiconductor hetero-
structures exhibit many interesting quantum effects at low
temperatures, such as the formation of molecular states,
Aharonov-Bohm oscillations, phase lapses, and the Kondo
effect.1–7 They are also predicted to exhibit quantum phase
transitions of different kinds.8,9 Interdot exchange interac-
tions, both ferromagnetic �FM� and antiferromagnetic
�AFM�, play a central role in such systems.10–17 Furthermore,
the phase-coherent electron transport leads to various pos-
sible interference effects and Fano antiresonances.18–21 Re-
cently, few-electron triple-quantum-dot structures have been
fabricated22,23 and even more complex multidot nanostruc-
tures can also be assembled in principle. It is thus appropri-
ate to endeavor to study phenomena which occur in multiple-
dot systems.

The simplest N-impurity Anderson model for several dots
embedded in parallel between two conduction leads in a left-
right symmetric way �see the insets in Fig. 1�a�� is defined by
H=Hb+�i=1

N Hi, where Hb describes a band with a constant
density of states �=1 /2D �2D is the bandwidth� and

Hi = �ni +
U

2
�ni − 1�2 + V�

k�

�ck�
† di� + H.c.� . �1�

The parameter �=�+U /2 is related to the gate voltage, U is
the electron-electron repulsion, and we assume that all impu-
rities hybridize with the same left-right symmetric combina-
tions of states from both leads with a constant hybridization
function �=��V2; this corresponds to taking the limit of
small interdot separation.8 The interdot tunneling coupling
and capacitive coupling �interdot charge repulsion� are as-
sumed small and all dots are equivalent: the system thus has
SN-symmetric group symmetry of all possible permutations
of dot labels i. At the particle-hole �p-h� symmetric point,
�=0, and for U /���1, the conduction-band-mediated in-
terdot exchange interaction induces FM alignment of the im-
purity spins, and the system undergoes the spin-N /2 Kondo
effect ending up in an underscreened strong-coupling �SC�
Fermi liquid fixed point with residual spin
N /2−1 /2.8,11,12,15,24–27 For very large � /U, the impurities are

unoccupied and the system is in the frozen-impurity �FI�
fixed point with no residual spin. In the single-impurity
�N=1� case, the SC and FI fixed points lie on the same line
of fixed points and they differ only in the strength of the
potential scattering.28 For N�2, however, the SC and FI
lines of fixed points are qualitatively different �each corre-
sponding to a different residual spin� and must be separated
by at least one quantum phase transition �QPT�.29

A reliable technique to study the low-temperature proper-
ties of coupled quantum dot systems is the numerical renor-
malization group �NRG�.30,31 In this Rapid Communication,
we show that, for any N�2, the FM alignment collapses at
some critical value �c1 and that for ���c1 the interimpurity
spin-spin correlations are AFM. For N�3, there is precisely
one additional QPT at slightly higher �c2 related to an abrupt
change in the average impurity occupancy. Certain of these
phase transitions can be easily detected in zero-bias conduc-
tance measurements.

Conductance. The on-site energy � can be regulated using
the gate voltages to tune the charge state �occupancy� on the
dots. Gate-voltage-dependent conductance is shown in Fig.
1�a� for N=1, . . . ,5 for a range of magnetic field strengths.
The conductance is calculated as G=G0 /2��=↑,↓sin2�qp

�

where G0=2e2 /h is the conductance quantum32 and the qua-
siparticle scattering phase shifts �qp

� are extracted from the
NRG excitation spectra.

At �=0, the systems are fully conducting at zero field and
there is a wide plateau of high conductance associated with
the spin-N /2 Kondo effect.8 While the N=1 system smoothly
crosses over from the Kondo regime to the nonconducting FI
regime, in the multi-impurity case we observe sharp discon-
tinuities: one discontinuity for N even and two discontinui-
ties for N odd. The conductance culminates in a unitary peak
slightly below �=0 �i.e., below � /U=1 /2� for all N�2. The
origin of this peak is simply potential scattering. The mag-
netic field B has a strong effect on the Kondo plateau: the
conductance is significantly reduced as soon as B is of the
order of the Kondo temperature TK. The potential scattering
peak is affected only by extremely high fields of the order of
U.
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Quantum phase transitions. Conductance discontinuities
find their counterparts in the jumps of the total impurity oc-
cupancy and spin-spin correlation �Si ·S j� �Fig. 2�a��; a new
feature, however, is the existence of two points of disconti-
nuity for N=4 while the conductance exhibits only one. In
the Kondo regime for �	�c1, the systems are nearly half

filled and spins are aligned.8 As we cross �c1, the occupancy
abruptly decreases and the spin correlations turn from FM to
AFM. For N�3, a second discontinuity occurs at somewhat
higher �c2; its characteristic property is the occupancy jump
by almost exactly N−2, from N−1 to 1. According to the
Friedel sum rule, a change in the occupancy by n is mirrored
in a change of the scattering phase shift by 
�qp=n� /2. This
explains the conductance jump from G=0 to G=G0 in the
case of odd N�3 and the absence of the second conductance
discontinuity for even N�4. It is remarkable that the second
QPT occurs precisely at the point where the conductance is
extremal.

The discontinuities originate from an interplay of the
Ruderman-Kittel-Kasuya-Yosida RKKY interactions,8 the
presence of the bound states in the continuum,11,19,21 and the
occupancy switching.33–35 We note that only the symmetric
state described by the operator dsym

† =1 /�N�idi
† hybridizes

directly with the conduction band, while all asymmetric
states are decoupled. A close-up of the points of discontinu-
ity for N=2,3 is shown in Fig. 3. As we move away from
�=0, only the symmetric state is depopulated until we reach
�c1. At this point, the asymmetric levels are depopulated and
the symmetric level repopulated �up to exactly 1 for N=2�;
such occupancy switching stems from the competition be-
tween the �-dependent coupling of dots to the conduction
band and the charging energy U.35 Between �c1 and �c2, the
occupancy of all states decreases until at �c2 another charge
oscillation occurs in which the occupancy of the asymmetric
states plummets. Both transitions can be classified as first-
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FIG. 1. �Color online� �a� Zero-temperature conductance
through systems of N parallel quantum dots as a function of the gate
voltage for a range of magnetic fields. The in-plane field leads only
to Zeeman splitting; no magnetic flux pierces the rings formed by
pairs of dots. �=4; NRG iterations were performed until the zero-
temperature limit was reached. TK=3.3�10−6D �for N=2�. The
magnetic field is measured in units of g
B. Only ��0 is shown due
to the symmetry of the problem. �b� Zero-temperature phase dia-
gram delimiting the different regimes as a function of the gate volt-
age. Filled circles ��� correspond to phase transitions visible in
conductance, while the empty circle ��� denotes the phase transi-
tion with no associated conductance discontinuity. �c� Conductance
and spin conductance in small magnetic field in the transition
region.
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FIG. 2. �Color online� �a� Total occupancy �charge� and spin-
spin correlation between pairs of spins as a function of the gate
voltage. �b� Schematic representations of the spin configurations in
the intermediate AFM ordered phases, their total spins, and degen-
eracies for N�3.
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order boundary quantum phase transitions �level
crossings�;33 the schematic phase diagram shown in Fig.
1�b�.

For �c1�� �N=2� and for �c1	�	�c2 �N�3�, each spin
interacts with every other spin antiferromagnetically with an
equal strength. The ground state of such an effective Heisen-
berg Hamiltonian consists of one singlet for N=2, two de-
generate doublets for N=3, two degenerate singlets for
N=4, etc.36 �see Fig. 2�b��. Results for magnetic susceptibil-
ity and entropy demonstrate that in odd-N systems the spin
degree of freedom is screened by the spin-1 /2 Kondo effect
and that the residual entropy is the logarithm of the addi-
tional degeneracy of the ground-state spin multiplets. This
implies that in this phase �for N�3� there are several equally
probable ways for the electron spin ordering. Consequently,
this “magnetic-frustration” phase is sensitive to the breaking
of the SN symmetry between the impurities, which lifts the
degeneracy. For odd N and for weak magnetic field, the
transmitted current in this regime becomes fully spin polar-
ized at some gate voltage �it should be noted that in the
presence of magnetic field the phase transition at �c2 is re-
placed by a crossover27�; see the plot of Gspin /G where
Gspin=G0 /2�sin2�qp

↑ −sin2�qp
↓ � is the spin current and G is the

total �charge� current, Fig. 1�c�. Thus the N=3 device might
function as a spin filter.27,37,38

For decreasing interaction strength U, the discontinuous
features in the conduction plots narrow down and disappear
for U=0; at this point the conductance curve consists of a
single Lorentzian peak of width N� centered at �=0. This
demonstrates that the conductance discontinuities are adia-
batically connected with the ghost Fano resonances �bound
states in the continuum� found in the systems of noninteract-
ing parallel dots.19,21

Robustness. Finite interdot charge repulsion U12 and in-
terdot hopping t have little effect as long as U12�U,
t�U−U12, and 4t2 / �U−U12��Jeff, where Jeff is the effec-
tive conduction-band-mediated interimpurity exchange
interaction.8 The first two constraints are easily met in
experiments39 and together they imply the third unless Jeff is
very small.

The SN symmetry is broken if the strengths of the hybrid-
ization �i of each impurity to the conduction band are made
unequal, or if different gate voltages �i are applied to the
dots. This leads to smearing of the discontinuities in the

occupancy and correlation functions; nevertheless, the dis-
continuities in the conductance curves persist �i.e., level
crossings still occur�. Curiously, the first discontinuity in the
conductance no longer coincides with the sign change of
�Si ·S j�.

For a generic problem of parallel dots, in particular if
left-right �LR� and SN symmetries are weakly broken, the
antisymmetric combinations of the conduction band elec-
trons become relevant and we need to consider the full
N-impurity two-channel model. In this case, the spin-N /2
Kondo effect is followed by another stage of the Kondo
screening to S=N /2−1 at significantly lower Kondo tem-
perature TK

�2�. This leads to a phase shift of � /2 in the odd
scattering channel and the zero-temperature conductance in
the “Kondo regime” becomes very small32 �see Refs. 15, 20,
and 27 for the N=2 case�. Nevertheless, if LR symmetry
breaking is weak, the conductance curves shown in Fig. 1 are
a good approximation for the finite-temperature conductance
in the experimentally relevant TK�T�TK

�2� range.
Spectral functions. In Fig. 4�a�, we plot spectral functions

Aij���=−1 / �2��Im�Gij
r +Gji

r � for N=1 and 2 at the p-h sym-
metric point.40 The diagonal spectral functions Ai=Aii repre-
sent the on-site density of states, while the out-of-diagonal
spectral functions Aij with i� j are related to the processes
where one electron is injected at one site and later extracted
at a different site. The peak in Ai at U /2 is the familiar
charge excitation peak that is observed for all N; for N�2 a
small negative peak appears in the out-of-diagonal spectral
densities Aij. Additional features for Jeff���U are related
to the magnetic alignment:16,41 the diagonal spectral function
exhibits a broad hump which peaks at 	Jeff, while the out-
of-diagonal spectral function exhibit a slight depression. For
�	Jeff, when the spins align, all Aij curves merge into a
Kondo resonance.

In Fig. 4�b�, we plot the symmetrized and normalized
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spectral density function g���=���ijAij, which determines
the conductance through the dots as G=G0
�−�f /���g d�,
where f is the Fermi-Dirac distribution function.40,42 In a
simple approximation, g��� at �=T indicates the conduc-
tance through the system at temperature T. Only for N=1 is
the approach to the unitary conductance at T=0 rapid
�quadratic�, as expected for regular Fermi liquid systems. For
N�2, the Kondo resonance is cusplike and the approach to
the unitary conductance is very slow �logarithmic�.24,43 This
is characteristic for underscreened Kondo systems, which be-
have as singular Fermi liquids.43,44

Conclusion. For N�3, the N-impurity Anderson model
undergoes two phase transitions. The first transition separates
the spin alignment and the associated spin-N /2 Kondo

screening from the spin antialignment with magnetic frustra-
tion and �for odd N� Kondo screening of the spin-1 /2 mo-
ment. The second transition reflects the instability of the
phases with the occupancy in the interval 1	 �ntot�	N−1.
Furthermore, for odd N the system abruptly switches from
being fully conducting to zero conductance; this would fa-
cilitate the experimental observation of similar effects in
quantum dot systems and might even have applications as a
switch or a transistor with very high on-off ratio. In addition,
the odd N system appears as a possible realization of a gate-
voltage-switchable spin filter device.
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