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Single-shot Stern-Gerlach magnetic gradiometer with an expanding cloud of cold cesium atoms
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We combine the Ramsey interferometry protocol, the Stern-Gerlach detection scheme, and the use of elongated
geometry of a cloud of fully polarized cold cesium atoms to measure the selected component of the magnetic-
field gradient along the atomic cloud in a single shot. In contrast to the standard method where the precession
of two spatially separated atomic clouds is simultaneously measured to extract their phase difference, which
is proportional to the magnetic-field gradient, we here demonstrate a gradiometer using a single image of an
expanding atomic cloud with the phase difference imprinted along the cloud. Using resonant radio-frequency
pulses and Stern-Gerlach imaging, we first demonstrate nutation and Larmor precession of atomic magnetization
in an applied magnetic field. Next, we let the cold atom cloud expand in one dimension and apply the protocol for
measuring the magnetic-field gradient. The resolution of our single-shot gradiometer is not limited by thermal
motion of atoms and has an estimated absolute accuracy below ±0.2 mG/cm (±20 nT/cm).
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I. INTRODUCTION

Atomic magnetometers are among the most precise devices
for measuring magnetic fields [1,2]. The magnetic-field mag-
nitude is determined by the Larmor precession frequency of
spins that is proportional to the field they are subjected to.
Centimeter-sized alkali-vapor magnetometers can be applied
to measure the magnetic field either as a vector quantity or as
a scalar magnitude, depending on the method. They can reach
magnetic-field sensitivity as high as 160 aT/Hz1/2 [3].

Ultracold atoms are very suitable for high-precision mea-
surements due to their long lifetimes and small Doppler
broadening [4]. The sensitivity of cold-atom magnetometers
does not reach that of the best alkali-vapor devices because
of the small size of atom clouds at comparable densities,
but they are suitable for measurements with a high spa-
tial resolution. They can reach 8.3 pT/Hz1/2 magnetic-field
sensitivity on a ∼10 μm scale [5] and they can detect
magnetic-field inhomogeneities down to 200 nT/cm [6]. Typ-
ically, cold-atom magnetometers are based on the same signal
detection technique as room-temperature atomic-vapor mag-
netometers, i.e., the Faraday rotation [7–14]. This is, however,
not the only possibility for detecting the spin precession in
cold-atom clouds. Various techniques have been developed,
including state-selective phase-contrast imaging [5,15] and
state-selective absorption imaging [6]. Finally, the projection
of the magnetization can also be measured through the popu-
lations of Zeeman sublevels using the Stern-Gerlach method,
in combination with using the Ramsey sequence to control the
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precession time [16–19]. This is the approach adopted in this
paper.

A basic gradiometer consists of two magnetometer probes
separated in space, and the magnetic gradient is obtained by
differentiating their outputs. Magnetic gradiometry using two
clouds of cold atoms was demonstrated in Ref. [19]. The
experimental setup allowed the control of cloud positions,
thereby enabling the measurement of the complete magnetic-
field-gradient tensor. In an inhomogeneous magnetic field, the
precession frequency is position dependent. For a uniform ini-
tial phase, the phase difference between the clouds at positions
�r1 and �r2 accumulates with time as

�φ(t ) = γ (B( �r2) − B( �r1))t ≈ γ t ( �r2 − �r1) · ∇B. (1)

Here, γ denotes the gyromagnetic ratio. The phase differ-
ence is therefore proportional to the spatial derivative of
the magnetic-field strength B along the direction connecting
both probes. Traditionally, a series of measurements with
incrementing interrogation (precession) times is required to
determine the time evolution of the phase difference. Special
care has to be taken to properly count the integer multiples of
2π [19].

Here we demonstrate a method for measuring the selected
component of the magnetic-field gradient with a single shot,
using only one elongated atom cloud instead of two spatially
separated clouds. Specifically, we measure the spatial pro-
file of the magnetic field through the spatial dependence of
the phase difference �φ(x, t ) along the cloud elongated in
the x direction, see Fig. 1(a). For a given precession time t ,
the magnetic-field gradient causes the accumulated precession
phase to have a continuous variation along the atom cloud. We
choose the magnetic field B0 to be oriented in the x direction.
In this case, we can approximate the position dependence of
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FIG. 1. (a) Schematic illustration of the magnetic gradiome-
ter showing an elongated 133Cs cold atom cloud expanded along
the dimple beam. (b) The experimental sequence for observing
position-dependent Larmor precession of magnetization, caused by
the ∂Bx/∂x component of the magnetic-field gradient. First, the
magnetic field is switched from the z to the x direction, then the atom
cloud is released to expand along the beam. Next, we use the Ramsey
sequence composed of two π/2 rf pulses that are separated by the
interrogation time TR. Finally, the absorption image is taken after
the Stern-Gerlach separation of mF -state populations in the applied
magnetic-field gradient ∂Bz/∂z.

the magnetic-field magnitude with B(x) ≈ B0 + (∂Bx/∂x)x.
Here, we neglect contributions from magnetic-field gradients
∂By/∂x and ∂Bz/∂x, which may result in small magnetic-field
components perpendicular to the dominant B0. The mag-
netization of the atoms in the cloud undergoes a Larmor
precession in the magnetic field. Therefore, its y projection
can be written as

My(x, t ) = M0 cos

(
γ B0t + γ

∂Bx

∂x
xt

)
. (2)

Here we assume that, at t = 0, the whole cloud is fully po-
larized along the y direction with initial magnetization M0. As
we show below, a single experimental run with only one Stern-
Gerlach image of the atom cloud is sufficient to obtain My(x)
at the selected precession time t , allowing an unambiguous
extraction of the magnetic-field gradient ∂Bx/∂x. If magnetic
field B0 is oriented in other directions, additional components
of magnetic-field-gradient tensor can be determined. For ex-

ample, to determine ∂By/∂x, magnetic field B0 has to be in the
y direction.

According to Eq. (2), nonzero components of the
magnetic-field gradient along the cloud cause a helical
(corkscrew) spatial dependence of the magnetization direc-
tion that can also be observed in Bose-Einstein conden-
sates [15,16]. It is important to note that the time fluctuations
of magnetic field B0 and any noncompensated homogeneous
external fields contribute only to the overall phase in My(x, t ).
In elongated condensates, the phase difference can also be-
come spatially dependent in the presence of inhomogeneous
internal magnetic fields caused by the spatially modulated
structure of spin domains [20–23], presumably induced by
long-range dipole interaction. In contrast, recent nondestruc-
tive Faraday-rotation experiments showed no spontaneous
domain formation in a tightly confined low-density 87Rb con-
densate [24]. In cold atom clouds, which have even lower
densities, these effects can be neglected.

In this paper, we focus on the detection of magnetic-
field gradients originating from external sources. A related
technique is described in Ref. [6], where an elongated but
nonexpanding cloud of 87Rb cold atoms is polarized with a
pump beam pulse and the projection of the magnetization
is detected with state-selective imaging. In our 133Cs exper-
iment, the magnetization of the expanding cloud is already
fully polarized along the applied magnetic field, and we start
the precession with a pulse of a radio-frequency (rf) magnetic
field. To measure My(x, t ), we perform the Stern-Gerlach
imaging (Fig. 1), where we apply a magnetic-field gradient
to separate the atoms in different Zeeman sublevels and cal-
culate the magnetization from the atom populations in each
sublevel. After taking into account the effect of the cloud
expansion during the protocol for measuring the magnetic-
field gradient, we reach an absolute accuracy below ±0.2
mG/cm (±20 nT/cm) in a single shot. The sensitivity of
magnetic-field gradient is enhanced by an order of magnitude
compared to Ref. [6], where they had ∼5 times more atoms in
∼10 times more elongated cloud, albeit at ∼20 times higher
temperatures, which only allowed much shorter interrogation
times (below 1 ms). As discussed below, the resolution of our
gradiometer is not limited by thermal motion (diffusion) of
atoms since their in-trap velocity distribution is mapped into
well-defined atom trajectories during the cloud expansion.

II. EXPERIMENT

Most cold atom magnetometers and gradiometers are based
on 87Rb atoms in F = 1 or F = 2 hyperfine states. Here,
we use 133Cs atoms in their F = 3 ground state; initially,
they are fully polarized along the x direction. We prepare
cold 133Cs atoms by laser cooling with a standard procedure
described in detail in Ref. [25], including the transfer of fully
polarized atoms in the (F = 3, mF = 3) state from a large
dipole trap to a small dimple trap with trap frequencies 2π ×
(20, 120, 120) Hz, followed by further evaporative cooling
for 100 ms. The resulting cloud in the dimple trap typically
consists of 2 × 105 cesium atoms at T = 1.29 ± 0.02 μK,
with the 1/e radii of σx0 = 69 ± 2 μm and σy0 ∼ σz0 = 12 ±
2 μm. To create an elongated atom cloud, one of the dimple
beams is turned off and the cloud starts expanding in the x
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direction, along the remaining beam (Fig. 1). As shown below,
a regime of linear-in-time expansion is reached after ∼20 ms
of time-of-flight (TOF). At 40 ms of total expansion time, the
cloud extends over an 1/e length of σx = 366 ± 3 μm.

Immediately after the evaporation, we turn off the
quadrupole coil producing a strong magnetic-field gradient
of ∂Bz/∂z = 31.3 G/cm used to levitate the cesium atoms
[Fig. 1(b)]. We also turn off the Helmholtz coil producing
a homogeneous magnetic field Bz = 22 G, which optimizes
the cesium scattering length during the evaporation. At the
same time, we turn on the compensation coils that cancel out
the components of magnetic field in the y and z directions
and set the magnetic field in the x direction to a value of
B0 = 143 mG, which corresponds to a Larmor frequency of
ω0 = γ B0 = 2π × 50 kHz (γ = 350 kHz/G). Since the in-
ductances of the quadrupole, Helmholtz, and compensation
coils are large (the switching times are in the order of several
ms), we wait for 40 ms for the magnetic fields to reach their fi-
nal values. During this period, the magnetization of the atoms,
which are fully polarized in the z direction, is adiabatically
rotated to the x direction since this process is slow compared
to the Larmor precession [26]. This approach is used to obtain
the initial magnetization of the cold cesium atoms in all the
experiments presented below.

To measure the Larmor precession of the magnetization,
we apply the Ramsey sequence of rf pulses followed by
the Stern-Gerlach measurement [Fig. 1(b)]. The Ramsey se-
quence consists of two π/2 pulses, rotating the magnetization
around the z axis, separated by the interrogation time TR. With
the first pulse, the magnetization is rotated from the x to the y
direction, where it is then left to precess in the yz plane until
the second π/2 pulse is applied. After the second pulse, the
y component of the instantaneous magnetization becomes the
x component and the z component stays unaffected. Then we
turn on a magnetic field Bz = 22 G and a magnetic-field gra-
dient ∂Bz/∂z = 100 G/cm for Stern-Gerlach imaging. Again,
the magnetic field cannot reach its final value instantly. There-
fore, the magnetization of the atoms adiabatically follows the
slow change of the orientation of the quantization axis. This
means that the Mz component measured via Stern-Gerlach
imaging is equal to the My component at the moment right
before the second π/2 pulse is applied.

In the presence of a strong magnetic-field gradient of 100
G/cm, the atom cloud splits into separated clouds according to
their mF -states [16–19]. After TSG = 10 ms of Stern-Gerlach
splitting, we take a standard absorption image of the separated
clouds and calculate the expectation value of the spin z com-
ponent,

〈Sz〉 =
∑+3

mF =−3 mF NmF∑+3
mF =−3 NmF

, (3)

where NmF is the atom number population in state mF . Simi-
larly, we can calculate the variance of Sz defined as

〈�2Sz〉 =
∑+3

mF =−3 m2
F NmF∑+3

mF =−3 NmF

− 〈Sz〉2. (4)

If the atoms are fully polarized and precess around the mag-
netic field perpendicular to their magnetization, the variance

FIG. 2. (a) The Stern-Gerlach measurements showing separated
atom clouds corresponding to the different mF -state populations
ranging from mF = −3 (at the bottom) to mF = +3 (at the top). In
the displayed absorption images, the rf pulse length, trf, increases
from 528 μs to 788 μs in steps of 20 μs. (b) Oscillations of 〈Sx〉 as
a function of trf with νRabi = 1905 Hz (solid line). (c) Absorption
images showing the Larmor precession of magnetization, where the
separation between two π/2 pulses, TR, increases from 12 μs to 64 μs
in steps of 4 μs. (d) Oscillations of 〈Sy〉 as a function of TR with
νL = 49 850 Hz (solid line). The red regions in (b) and (d) mark the
experimental points shown in (a) and (c), respectively. Each absorp-
tion image in (a) and (c) shows the area of 376 μm × 1738 μm. In
all these experiments, TSG = 10 ms.

is equal to 0.5 when time averaged over one precession pe-
riod [17]. However, in the presence of decoherence, the time
average of 〈�2Sz〉 increases with the interrogation time TR.
If the elongated cloud is oriented along the x direction, the z
component of the spin and its variance will be functions of x:
〈Sz(x)〉 and 〈�2Sz(x)〉.

III. RESULTS

Figure 2(a) shows the oscillations of the mF -state popula-
tions of 133Cs atoms in the F = 3 hyperfine state measured
by the Stern-Gerlach method, applied immediately after one
rf pulse of length trf . Using Eq. (3), we can calculate 〈Sz〉 as
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a function of tRF, which is equal to 〈Sx〉 immediately after the
end of the rf pulse. The nutation of magnetization observed
as oscillations in 〈Sx〉 is displayed in Fig. 2(b). We obtain
the Rabi frequency of νRabi = 1905 Hz and determine the
π/2-pulse length to be ∼130 μs.

To observe the Larmor precession of magnetization, we
apply the Ramsey sequence composed of two π/2-pulses
followed by the Stern-Gerlach measurement. By varying the
time between the two pulses, the interrogation time TR, we
can observe fast oscillations of mF -state populations as shown
in Fig. 2(c). Again, using Eq. (3) we can calculate 〈Sz〉,
which is equal to 〈Sy〉 at the moment before the second π/2
pulse is applied. The fast oscillations of 〈Sy〉 are displayed
in Fig. 2(d) from which we obtain the Larmor precession
frequency of νL = 49850 Hz. This allows for a more precise
determination of the magnetic-field magnitude, which is equal
to B0 = 142.43 mG. A small mismatch between the values
of νL and νrf, and consequently imperfect π/2 pulse, results
in small reduction in 〈Sy〉 oscillation amplitude, S0, from the
ideal value of 3.

In Figs. 3(a)–3(c), we show the Larmor precession of mag-
netization along the elongated cold atom clouds for different
expansion times TE . For short interrogation times TR, the
mF -state populations collectively oscillate in time for all TE ,
meaning 〈Sy(x)〉 is almost independent of position x along
the cloud. However, for longer TR, the mF -state populations
become space-dependent (Fig. 4). This is caused by the pres-
ence of the component ∂Bx/∂x of the magnetic-field gradient.
Figure 4(b) shows the position dependent 〈Sy(x)〉 for different
values of TR and is a signature measurement of the presented
magnetic gradiometer detection principle.

Before we proceed with the evaluation of the component
∂Bx/∂x of the magnetic-field gradient, we first analyze the
expansion of cold atom cloud in a dimple beam. The ini-
tial cloud widths σz0 and σx0 are obtained from the analysis
presented in Figs. 3(d) and 3(e) by fitting the atom density
profiles during both free-space expansion and expansion along
the dimple beam. Notably, when σx � σx0, which is after
∼20 ms of expansion in a dimple beam, σx starts increasing
linearly in time with a velocity vx = √

kBTx/m = 9.0 ± 0.1
mm/s, where kB and m are the Boltzmann constant and atomic
mass of cesium, respectively. This justifies a simple model
of phase difference accumulation in expanding atom cloud
schematically presented in Fig. 5.

For a nonexpanding cloud the phase difference �φstatic

accumulated during the interrogation time TR can be derived
directly from Eqs. (1) and (2),

�φstatic(x) = γ
∂Bx

∂x
xTR, (5)

which is proportional to ∂Bx/∂x and TR. However, due to the
effect of cloud expansion, it can be shown using a simple
geometric consideration that the phase difference �φexpand

must be renormalized according to

�φexpand(x) = �φstatic(x) · TE − TR/2

TE + TSG
. (6)

The renormalization factor takes into account that during the
interrogation time TR the atoms on average feel the magnetic

FIG. 3. Larmor precession of mF -state populations for expansion
times (a) TE = 0 ms, (b) TE = 20 ms and (c) TE = 40 ms. Here the in-
terrogation time TR runs from 0 μs to 36 μs in steps of 4 μs (TSG = 10
ms). The absorption images show the area of 1407 μm × 2110 μm.
(d) The extracted 1/e widths σz as a function of time of flight (TOF)
during free-space expansion (blue squares, 3D TOF) and expansion
along a single dimple beam (red diamonds, 1D TOF). From the
fit with the model σ 2

z = σ 2
z0 + kBTz/m · t2

TOF, σz0 = 12 ± 2 μm, and
Tz = 1.27 ± 0.02 μK are obtained. (e) σx for expansion along a
dimple beam (red circles) together with the corresponding fit (solid
line) using σ 2

x = σ 2
x0 + kBTx/m · t2

TOF. We obtain σx0 = 69 ± 2 μm
and Tx = 1.29 ± 0.02 μK. The dashed line follows the linear-in-
time expansion with vx = √

kBTx/m = 9.0 ± 0.1 mm/s. The red and
green areas mark, respectively, the typical interrogation, and Stern-
Gerlach detection time intervals in our measurement protocol.

field at the position (x1 + x2)/2 (for details, please refer to
Fig. 5).

In Fig. 4(b), we show the fits of experimental 〈Sy(x)〉 using
Eq. (2) for a range of interrogation times TR. From each fit,
we obtain the wavelength λ of helical spatial dependence of
magnetization. From λ, we then calculate the component of
the magnetic-field gradient. For the nonexpanding case,

(
∂Bx

∂x

)
static

= 2π

γ TRλ
, (7)
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FIG. 4. (a) Absorption images of position dependent mF -state
populations for a range of interrogation times TR. The first image
serves as a reference; it is taken with a short TR = 16 μs and shows
position-independent populations of mF states. The absorption im-
ages show the area of 914 μm × 2110 μm (TE = 30 ms and
TSG = 10 ms). (b) Extracted 〈Sy(x)〉 as a function of position x for
different TR. (c) The amplitude S0 of the position-dependent 〈Sy(x)〉
obtained from sinusoidal function fits [red lines in (b)]. (d) The
variance 〈�2Sy〉, time averaged over one precession period. (e) The
extracted component ∂Bx/∂x of the magnetic-field gradient for two
scenarios: (i) the static model [Eq. (7), blue circles] and (ii) the model
taking into account the expansion of cold atom cloud [Eq. (8), red
circles]. The error bars denote a standard deviation of magnetic-field
gradient obtained from ten repetitions.

whereas for expanding cloud,
(

∂Bx

∂x

)
expand

= 2π

γ TRλ

TE + TSG

TE − TR/2
. (8)

The expression for the magnetic-field gradient is independent
of the atom-cloud temperature and that is one of the key
results of our paper.

The importance of taking into account the effect of expan-
sion is best seen in Fig. 4(e), where we plot and compare
∂Bx/∂x obtained from Eqs. (7) and (8). Whereas for the
static model (no expansion) the values of ∂Bx/∂x decrease
with increasing interrogation time TR, for the expanding-cloud
model the extracted values become constant and their error de-

FIG. 5. Schematic illustration of cold atom cloud expansion. At
time t = 0, when the perpendicular dimple beam is turned off, the
cloud starts expanding along the remaining dimple beam. At t1, the
first π/2 pulse is applied and the magnetization starts precessing.
At t2, the second π/2-pulse is applied and the Stern-Gerlach proto-
col starts (green area), ending at t3, when the absorption image is
taken. The red area marks the time interval in which the position-
dependent phase difference �φ(x) is accumulated. The atoms at the
final position x3 reflect the average magnetic field between positions
x1 and x2. Because the magnetic field is linearly dependent on the
position this is equal to the magnetic field at (x1 + x2)/2. The cor-
responding time is exactly in the middle of the interrogation time
interval at (t1 + t2)/2 = TE − TR/2. The renormalization factor in
Eq. (6) follows directly from similar triangles: (x1 + x2 )/2 : x3 =
(TE − TR/2) : (TE + TSG).

creases with increasing TR for TR � 15 ms. For even longer TR,
the amplitude S0 of modulated 〈Sy(x)〉 becomes substantially
reduced [Fig. 4(c)]. Additionally, its time-averaged variance
〈�2Sy〉 increases [Fig. 4(d)], meaning that the decoherence
of magnetization becomes important and reduces the sensor
accuracy. The reason behind this observation is mainly in our
measurement protocol (Fig. 5), where longer TR brings the
interrogation interval closer to the point where the effects of
the finite initial size of atom cloud become relevant. However,
these mainly affect the decoherence of magnetization, but
have only a very small impact on the evaluation of magnetic-
field gradient from Eq. (8). Even for TR = 15 ms the estimated
systematic correction is below 3%. Finally, for interrogation
time TR = 7 ms we obtain ∂Bx/∂x = 7.3 mG/cm with an
estimated error below ±0.2 mG/cm in a single shot. The
measured magnetic-field gradient is of external origin, most
probably arising from ionic pumps surrounding our experi-
mental chamber.
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IV. DISCUSSION AND CONCLUSIONS

Using the described single-shot Stern-Gerlach magnetic
gradiometer it is in principle possible to determine any com-
ponent of the complete magnetic-field-gradient tensor ∂Bi/∂ j,
with i, j = x, y, z. ∂Bi can be selected by the direction of
B0 (in Fig. 1, this is Bx), whereas ∂ j can be chosen by the
orientation of the elongated cold atom cloud. However, for
the sensor accuracy to be similar for all measured ∂Bi/∂ j
components, the imaging should preferably be perpendicular
to the elongated cloud and Brf perpendicular to B0 (Fig. 1).
The presented method has the potential for miniaturization
using atom chips [27,28]. Such technology shortens the time
needed to prepare cold atoms and facilitates the integration of
laser beams and magnetic coils for producing the necessary
magnetic fields. For our method, it is important that Brf and
B0 are homogeneous. If sufficient homogeneity cannot be
achieved with integrated coils, external coils could be used
with an atom chip. This type of device could also easily be
rotated in space to measure the magnetic-field gradients in an
arbitrary direction.

While the sensitivity and the accuracy of our device are
comparable to or even surpass current proposals [5,6], it lacks
temporal resolution. The Stern-Gerlach detection of magneti-
zation is destructive and ∼13 s are required to prepare a new
elongated cloud of cold cesium atoms for each measurement.
Using 87Rb, a much faster production of cold atoms is possible
and could reduce the temporal resolution well below 1 s. For
example, in an all-optical 87Rb setup, rates on the order of
107 cold atoms per second were reported [29]. In Ref. [30],
atom-chip technology was used to achieve an even higher rate
of about 108 atoms per second.

There are multiple ways to improve the sensitivity of the
gradiometer presented here while retaining the same benefits
and working principles. The minimal measurable gradient
is limited by the length of the cloud since the precision of
our method decreases for longer wavelengths λ. Therefore,
a longer cloud would allow measurement of smaller gradi-
ents. The other option is to use longer interrogation times
TR. This improves the precision because λ decreases for the
same gradient. However, TR cannot be increased indefinitely,
because the signal amplitude S0 decreases due to decoherence.
It would immediately be possible to allow longer TR if one
extends the magnetization coherence time. This depends on

satisfying the condition σx � σx0. For example, this can be
achieved by decreasing the initial size σx0 of the atom cloud
before releasing it into the dimple beam. Alternatively, one
could use more strongly elongated atom clouds before the first
π/2 rf pulse is applied.

By creating a nonexpanding cold atom cloud in an
elongated box-shaped potential, the cloud would become
homogeneous, meaning that the errors in 〈Sy(x)〉 become com-
parable along the cloud and the magnetic-field gradient can
be easily calculated directly from Eq. (7), describing the non-
expanding (vx = 0) case. For example, this can be achieved
by loading the atoms from a broad dipole trap directly into
a single dimple beam, which is at both ends truncated with
two narrow 532 nm laser beams acting as repulsive barriers.
However, in this approach atomic diffusion will be present
during the measurement protocol, which will substantially
reduce the coherence time and the sensitivity of the instru-
ment. A possible solution is to prepare the atoms at much
lower temperatures [15], which can be in principle achieved
by evaporative cooling in such a box-shaped trap.

In summary, we have demonstrated a simple and versa-
tile method for measuring components of the magnetic-field
gradient in a single shot with an estimated absolute accu-
racy below ±0.2 mG/cm (±20 nT/cm). This method can
be adopted to the majority of cold-atom setups with dif-
ferent atomic species, where it can serve as a quantitative
characterization tool or for the cancellation of magnetic-field
gradients [4,6,31,32]. We emphasize that the sensitivity of our
magnetic gradiometer suffers neither from atomic diffusion
nor from fluctuations or drifting of homogeneous magnetic
field since only spatially dependent components of the mag-
netic field (the gradients and higher derivatives) contribute to
the measured space modulated magnetization along the elon-
gated cold atom cloud. In addition, the presented method has
the potential for miniaturization and for further improvements
of its sensitivity to magnetic-field gradients in a single shot.
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[25] T. Mežnaršič, T. Arh, J. Brence, J. Pišljar, K. Gosar, Ž. Gosar,
R. Žitko, E. Zupanič, and P. Jeglič, Phys. Rev. A 99, 033625
(2019).

[26] C. P. Slichter, Principles of Magnetic Resonance (Springer Ver-
lag, Berlin, 1996).

[27] M. Keil, O. Amit, S. Zhou, D. Groswasser, Y. Japha, and R.
Folman, J. Mod. Opt. 63, 1840 (2016).

[28] D. Becker et al., Nature 562, 391 (2018).
[29] T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. A 71,

011602(R) (2005).
[30] J. Rudolph, W. Herr, C. Grzeschik, T. Sternke, A. Grote,

M. Popp, D. Becker, H. Müntinga, H. Ahlers, A. Peters, C.
Lämmerzahl, K. Sengstock, N. Gaaloul, W. Ertmer, and E. M.
Rasel, New J. Phys. 17, 065001 (2015).

[31] C. J. Dedman, R. G. Dall, L. J. Byron, and A. G. Truscott, Rev.
Sci. Instrum. 78, 024703 (2007).

[32] A. Smith, B. E. Anderson, S. Chaudhury, and P. S. Jessen, J.
Phys. B: At. Mol. Opt. Phys. 44, 205002 (2011).

022611-7

https://doi.org/10.1063/1.4803684
https://doi.org/10.1088/1361-6455/ab0bd6
https://doi.org/10.1063/1.5084004
https://doi.org/10.1103/PhysRevLett.95.050401
https://doi.org/10.7567/APEX.6.052801
https://doi.org/10.1103/PhysRevA.88.031602
https://doi.org/10.7566/JPSJ.82.094002
https://doi.org/10.1103/PhysRevA.92.053604
https://doi.org/10.1038/nature05094
https://doi.org/10.1103/PhysRevLett.100.170403
https://doi.org/10.1103/PhysRevLett.105.090402
https://doi.org/10.1103/PhysRevLett.112.185301
https://doi.org/10.1088/1367-2630/aab2a0
https://doi.org/10.1103/PhysRevA.99.033625
https://doi.org/10.1080/09500340.2016.1178820
https://doi.org/10.1038/s41586-018-0605-1
https://doi.org/10.1103/PhysRevA.71.011602
https://doi.org/10.1088/1367-2630/17/6/065001
https://doi.org/10.1063/1.2472600
https://doi.org/10.1088/0953-4075/44/20/205002

