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Framework "NRG Ljubljana" is a set of interrelated computer codes for performing numerical
renormalization group (NRG) calculations for quantum impurity problems, described by models
such as the Kondo exchange (s-d) model or the Anderson single impurity model, and their multi-
impurity and multi-channel generalizations. It also contains a number of tools for analyzing results
(thermodynamic properties, such as magnetic and charge susceptibility, entropy and heat capacity;
expectation values of arbitrary operators; spectral functions). It is user friendly, in the sense that
it is easy to set up new types of problems (Hamiltonians, perturbation terms, etc.) and the output
is formatted and annotated for easy interpretation, parsing and plotting.

To achieve a high degree of flexibility without sacrificing numerical efficiency, "Ljubljana NRG" is
composed of a hierarchy of modules: high level modules are written in a mixture of functional and
procedural Mathematica code, while the low level numerically intensive parts are programmed
in the object oriented approach in the C++ language. The foundation of the framework is a
Mathematica package for performing calculations with non-commutative second quantization op-
erators, SNEG. Next layer is a Mathematica program which defines the Hamiltonian, the basis of
states, and the physical operators of interest: with the help of SNEG, Hamiltonian and operators
can be defined using the familiar second-quantization expressions. This program performs the
diagonalization of the initial Hamiltonian and prepares the input for the NRG iteration proper.

For efficiency, NRG iteration is performed by a separate C++ program: for a typical problem,
most of the time (90%) is spent in the LAPACK dsyev or dsyevr routine which solves the
eigenvalue problem. There is very little housekeeping overhead due to the tasks required by the
NRG iteration; "NRG Ljubljana" is thus suitable for performing large scale NRG calculations on
computer clusters.
Chapter 1 is a general introduction to the numerical renormalization group based on a chapter
from my PhD dissertation. Chapter 2 is the reference manual for the software itself.
“NRG Ljubljana” and this manual are both work in progress. Any comments, critiques, feature
request are very welcome.
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Chapter 1

Numerical renormalization group

The numerical renormalization group (NRG) is a non-perturbative RG approach to the quantum
impurity problems.!™ Being non-perturbative, it does not suffer from logarithmic singularities,
as scaling approaches do. NRG builds upon the RG approach to the Kondo problem of Ander-
son, Yuval and Hamann,?® however in NRG the RG transformations are performed numerically.
The essential advantage of this approach is that the calculation need not be guided by “physi-
cal intuition” and is therefore unbiased; however, by the same token there is no straight-forward
description in terms of running coupling constants to provide a simple physical picture.

Schematically, NRG consists of logarithmic discretization of the conduction band(s) and of iterative
diagonalisation of a series of Hamiltonians. The method was expounded in K. G. Wilson’s seminal
paper “The renormalization group: Critical phenomena and the Kondo problem” (Rev. Mod.
Phys., 1975)! where it was applied to numerically solve the Kondo problem. This was a turning
point in the field of impurity problems since an essentially exact solution for the temperature
dependence of the thermodynamic quantities in the cross-over region between the high-temperature
local-moment regime and the low-temperature strong-coupling regime was obtained for the first
time.

NRG has since then become the principal tool in the field of the quantum impurity physics. The
approach was used to study the potential scattering in the Kondo problem,” ' the s-d problem
with spin 1,'''3 the two-channel Kondo problem,'*® particle-hole symmetric>'? and asym-
metric> Anderson model, orbitally degenerate Anderson model?*-2? and models where different
magnetic configurations are mixed.?* More complex multi-impurity problems are also tractable:
significant effort was devoted to the two-impurity Kondo problem,?’~2® two-impurity Anderson
model?®30 and, more recently, to clusters of three and more Anderson impurities.?"3? In addi-
tion, local phonon modes can also be taken into account as in the Anderson-Holstein model.?*37
New direction are applications of NRG to quantum impurity problems with bosonic continuum
bath,®® non-trivial density of states (pseudo-gap) of the conduction band,**~** non-Fermi liquid
fixed points,*>*® magnetic impurities in superconductors** 5% and quantum phase transitions.>!>>2
Recently, NRG has become widely applied to study conductance through single,>> 5% double,?”~66
triple!:32:67 and multiple quantum dots,%® % including quantum dots attached to ferromagnetic
leads,”>™ and to study singlet-triplet transitions.”>"®> A number of exotic Kondo states were
found, among them the SU(4) Kondo effect.

NRG is increasingly often applied as the impurity solver in the dynamical mean-field theory
(DMFT) approach® 7" 7 to lattice problems; notable examples are applications to the Hubbard
model,” the periodic Anderson model,®® the Hubbard-Holstein model®"%? and the two-band
Hubbard model.?3
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1.1 Implementation overview

"NRG Ljubljana” code was designed and implemented from scratch. The main design goals were
flexibility in setting up new problems, ease of taking into account various symmetries, and speed.
The code was implemented in a layered architecture, see Fig. 1.1. The cornerstone is a Mathemat-
ica package sneg for performing calculations with second quantization operators. This package
is used, on one hand, in deriving the recursion relations for the NRG iteration and, on the other
hand, for exactly diagonalizing the initial Hamiltonian and transforming the matrices of all op-
erators of interest in the basis of eigenstates of the Hamiltonian in each invariant subspace. The
NRG iteration routines are implemented in C++ for speed. Diagonalisations are performed using
dsyev and dsyevr routines from the LAPACK library,®* while all other matrix and vector operations
use the ublas library from the project boost. Standard Template Library containers are heavily
used, which makes the code easy to read (and maintain) and helps avoid memory leaks. Additional
information can be found on the “NRG Ljubljana” home page http://auger.ijs.si/ljubljana.
The package was released freely for general use under the GNU Public license.?®

Model
Parameters
Observables
Problem setup
Mathematica
Input to NRG:
eigenstates,
irreducible
matrix elements
NRG iteration
Output: Cr
eigenstates,
expectation values,
spectra
Postprocessing

Perl, Mathematica

Figure 1.1: The three-step procedure from the problem definition to the results in “NRG Ljubljana”
code.

1.1.1 Package sneg

Package sneg is a collection of transformation rules for Mathematica, which simplifies calculations
using the anti-commuting fermionic second quantization operators. The foundation is a defini-
tion of non-commutative multiplication with automatic reordering of operators in a standard form
(normal ordering with creation operators preceding the annihilation operators), which takes into
account selected (anti-)commutation rules. Standard form reordering allows simplification of ex-
pressions and the choice of normal ordering permits efficient evaluation of matrix elements in a
given basis. Some of the additional capabilities of the package that are relevant to the NRG code
are:

e Generation of basis states with well-defined number @) and spin S (or other quantum num-
bers).

e Generation of matrix representations of operators (in particular of the Hamiltonian) in se-
lected basis.
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e Collection of functions that generate various operator expressions, such as electron number,
electron spin and isospin, one-electron and two-electron hopping, exchange interaction, etc.

e Occupation-number representation of states and evaluation of operator-vector expressions.

Among miscellaneous features of the package are manipulation routines for operator expressions
(canonic conjugation, spin inversion), calculation of vacuum expectation values of operator ex-
pressions, transformations from product-of-operators to occupation-number representations of
states and vice-versa, Dirac’s bra-ket notation, simplifications using Wick’s theorem, support
for sums over dummy indexes (momentum, spin) and simplifications of such expressions, etc.
Package sneg is useful beyond NRG calculations. It has been applied to perform exact di-
agonalizations on Hubbard clusters, perturbation theory to higher orders®® and calculation of
commutators of complex operator expressions. It should also be suitable for educational pur-
poses, since it makes otherwise tedious calculations a routine operation: the nicest feature is
perhaps that the use of the package prevents inauspicious sign errors when commuting fermionic
operators. Package sneg was also released freely for general use under the GNU Public license
(http://auger.ijs.si/ljubljana/sneg).

1.2 Logarithmic discretization

The essential element of the NRG approach is the logarithmic discretization of the conduction
band whereby the infinite number of the continuum degrees of freedom is reduced to a finite
number; this renders the numerical computation tractable. If we attempted to discretize the
band linearly, we would obtain a single interval centered around ¥ = 0 that would contain an
infinite number of different energy scales: this is undesirable, since it is known that in the Kondo
problem excitations at each energy scale contribute equally. It is thus preferable to perform a
discretization which divides the band into a set of different energy scales; in this manner the
energy-scale separation — a known property of QIMs — is achieved explicitly. Viewed from another
perspective, the logarithmic mesh gives a good sampling of the states near the Fermi energy which
play an essential role in the Kondo problem. Wilson’s logarithmic discretization consists of the
following steps:!'»2

1. The conduction band is divided into slices of exponentially decreasing width, for example
into intervals I, = [-A~™, —A~("*+D]D for holes and I} = [A=("+1) A="]D for electrons
with m > 0, see Fig. 1. A > 1 is called the logarithmic discretization parameter (parameter
Lambda in “NRG Ljubljana”). An upper bound of A = 3 has been established for reliable
computation of thermodynamic properties in this discretization scheme.!>86

2. Each interval is Fourier-transformed, i.e. we construct a complete set of wave functions ¢,

1
A AT AR AP A2 N

Figure 1.2: Original Wilson’s division of the conduction band into bins of geometrically decreasing
width. Each thick colored line corresponds to a state which represents the entire interval of
conduction band states delimited by a pair of dashed lines.
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Figure 1.3: Various representation of the logarithmic discretization in quantum impurity prob-
lems. a) Discretized problem and coupling connectivity of wave-functions wil. b) Onion-shell
representation of Wannier orbitals around the impurity. ¢) Hopping or Wilson chain Hamiltonian.

inside each interval:
Yh(e) = ’/‘;—m exp(iwnle), foree I, (1.1)
7

where w,, is the fundamental Fourier frequency in the mth interval, w,, = 27A™/(1 — A1),
and [ > 0. Functions ¢, , are defined similarly for e € ;. The first wave function (I = 0)
in each interval is a constant. Only such “average states” 1/)320 couple to the impurity, while
other Fourier components are localized away from it, Fig. 1.3a. We therefore retain only
wio and drop the remaining states from consideration. This is clearly an approximation,
since the states wil couple to wio. It was shown that this coupling goes to zero as A — 1
(i.e. in the continuum limit) and that even for moderately large A = 2 up to A = 3 the
approximation is good.! Physically, we are neglecting those conduction band states that
are localized far away from the impurity in the real space and, at the same time, far away
from the Fermi surface in the reciprocal space.'*8” There is no a priori justification for this
approximation; in the words of Wilson: “The only true justification for using the logarithmic
division is that a successful calculation results.”

3. Unitary transformation to a tridiagonal basis is performed using the Lanczos algorithm.
The initial state is the Wannier orbital about the impurity site; this is the orbital to which
the impurity is coupled in the standard Kondo problem. Lanczos states correspond to
creation operators fg, ff and have a radial extent of AY2/kp, A%/2/kp, ... about the
impurity:*!® they form “onion shells” around the impurity, Fig. 1.3b. The conduction band
Hamiltonian rewritten in this basis takes the form of a one-dimensional tight-binding model
with interacting impurity attached to its end, Fig. 1.3c. This tight-binding Hamiltonian is
named the hopping Hamiltonian or the Wilson chain. The problem is thereby reduced to an
effective one dimensional problem. In the A — 1 limit, a continuum model is recovered. It
may be noted that the low-energy levels for small A are approximately equidistant (as in the
field theory defined on a finite-size system), while for moderate A the energies are spaced
exponentially starting with the third level, Fig. 1.4.

4. The total Hamiltonian is defined on an infinitely long chain with exponentially decreasing
coupling constants:

H = Himp + HC + Hchain

Hchain = Z anAfn/Q (f;,,uafnJrl,ua + HC) ,

n=0 poa
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Figure 1.4: Positive one-particle eigenenergies of the Wilson chain Hamiltonian with even number
of sites as a function of the discretization paramter A.

where Hjyp, is the impurity Hamiltonian, Hc is the coupling Hamiltonian, and Hgpain is the
Wilson chain Hamiltonian. In the original Wilson’s scheme &,, are correction factors

1— Af(nJrl)
fn = ) (13)
[(1 _ A—(2n+1))(1 _ A—(2n+3))]1/2

which rapidly tend to 1. The coupling Hamiltonian Hc must be rewritten in terms of
the Wilson chain operators. In the simplest case of the single-impurity one-channel Kondo
problem, it is equal to

1
He=JS- Z fg,u (gamﬂ) Jous (1.4)
o

where S is the impurity spin operator. It was found that to connect the numerical results
at finite A to the A — 1 limit, it is necessary to correct the coupling constant I' (Anderson-
model-like coupling) or J (Kondo-model-like coupling) by multiplying it by a correction
factor? 88

C114A
S 21-A!
This correction can be enabled in “NRG Ljubljana” by setting the option Alambda to true.
While A, is typically small (A ~ 1.04, A3 =~ 1.1, A4 ~ 1.16 ), it must be recalled that I" or
J enter the exponential function in the expression for the Kondo temperature, therefore Ay
has a significant effect.

AA In A. (1.5)

One should keep in mind that for A # 1, the Hamiltonian obtained from the discretization is
only an approximation to the original impurity model and that, strictly speaking, NRG is not an
exact method. Nevertheless, by comparing results with known analytical solution (Bethe Ansatz),
a remarkable agreement is found. The principal advantage of NRG is its applicability to more
complex problems where analytical approaches fail.

Improved discretization schemes are the interleaved method (also known as the “z-trick”)28:86:89

and an approach based on an over-complete basis of states;’® ' the latter was found to give
excellent results and was used in most of the calculations presented in this work. All three
approaches are implemented in “NRG Ljubljana” the corresponding configuration options are
disc=wilson, disc=yoshida and disc=campo, i.e. they are named after the first authors of the
publication where they were introduced. In the interleaved method (disc=yoshida), the first
positive-frequency interval is 1 > ¢ > A~ the others are A1 ™7™ > ¢ > A=*"" (m = 1,2,---),
see Fig. 1.2; for z = 1 this reduces to the original discretization. We then average over the
sliding (twist) parameter z (z in “NRG Ljubljana”) in the interval 0 < z < 1 to remove the
oscillations in thermodynamic and dynamic quantities which become pronounced for increasing
value of parameter A.8¢ In practice an average over a small number of values of z already gives
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Figure 1.5: Yoshida’s discretization scheme and the interleaved method.
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Figure 1.6: Comparison of magnetic susceptibility and entropy of the single-impurity Anderson
model calculated using two different discretization types and for different values of the discretiza-
tion parameter A. The coarse results were post-processed by averaging over z (the z-trick) and
even-odd effects were removed by averaging over two consecutive NRG iteration steps.

very satisfactory results. Using the z-trick, the discretization parameter A can be increased to
large values. In Fig. 1.6 we illustrate the rapid convergence to the A — 1 limit in the case of both
improved methods. In the case of Yoshida discretization, the correction factor Ay was used, while
no such correction is necessary in the case of Campo discretization.

Varying the sliding parameter z can also be used to assess numerical accuracy of the results by
comparing eigenvalue spectra computed for different values of z. This is particularly important
if the finite-size spectrum itself is the result of interest: the z-trick namely cannot be used to
average the spectra in a meaningful manner. For large A, the spectra for different z can differ
substantially, even though the z-averaged quantities (such as spectral functions) are an excellent
approximation to the A — 1 results.
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There is no good a priori recipe for choosing the value of A, the number of values of z, and the
number of states retained in the NRG iteration; this depends on the number of impurities (i.e.
the degeneracy), the values of model parameters and the quantities computed. For each new class
of problems, a convergence study should be performed.

The density of states (DOS) in the conduction band is usually taken to be independent of energy,
i.e. p = const, which is also known as the flat-band approximation. This choice is particularly
convenient as it leads to analytic simplicity and some calculations can be performed in closed
form.?? In addition, RG treatment of the problem has shown that provided that all the energy
scales of the problem are much smaller than the bandwidth, the form of the DOS at large ener-
gies is irrelevant in the RG sense.! Nevertheless, NRG calculations can be setup for an arbitrary
DOS of the conduction electrons.??-41:89:91,93 “NRG Ljubljana” has built-in support for flat bands
(band=flat) and for tight-binding bands with cosine dispersion (band=cosine) where the hybridi-
sation funciton is T'(e) o /1 — (¢/D)2. There is also a stub for arbitrary DOS /hybridization to
be defined by the user (band=dmft), which is required if NRG is used as the impurity solver in
DMFT.

1.3 Symmetries and basis construction

The efficiency of NRG calculations can be significantly improved if the symmetries of the problem
are taken into consideration. In addition to the performance concerns, the implementation of
symmetries is important on more fundamental ground: if the conservation laws are not built-in,
numerical round-off errors tend to induce accidental symmetry breaking which, if relevant, can
lead to erroneous results. Continuous symmetries (such as SU(2)spin, SU(2)isospins U(1)charge) can
be taken into account by constructing the basis states using the Lie group representation theory
(i.e. Clebsch-Gordan coefficients and the Wigner-Eckart theorem).? Discrete symmetries (such
as parity or particle-hole Zy symmetries) can be taken into account by projecting basis states to
invariant subspaces with well defined Zs quantum number using suitable projection operators. By
taking explicitly into account the full symmetry of the problem, we can make a formerly intractable
problem within the reach of modern computers. For example, while not so long ago it was deemed
difficult to obtain anything but the NRG eigenvalue flows for the two-channel problems,'® it
is now possible to perform calculations of thermodynamic and even dynamic properties of multi-
impurity two-channel problems.?? In the current implementation of “NRG Ljubljana”, the following
symmetry types are supported:

e U(1)charge X U(1)spin, i.e. good quantum numbers are charge  and spin projection S.
(symmetry type QSZ in “NRG Ljubljana”) — suitable for general quantum impurity models
in the presence of the magnetic field;

e U(1)charge X U(1)spin X Z2, i.e. good quantum numbers are charge @, spin projection S, and
parity P (symmetry type QSZLR in “NRG Ljubljana”) — suitable for models with reflection
symmetrys;

e U(1)charge X SU(2)spin, i-€. good quantum numbers are charge @) and total spin S (symmetry
type NRG) — suitable for general QIMs in the absence of the magnetic field;

e U(1)charge X SU(2)spin X Zg, i.e. good quantum numbers are charge @, total spin S and parity
P (symmetry type QSLR);

o SU(2)iso X SU(2)gpin, i-€. good quantum numbers are total isospin I and total spin S (sym-
metry type IS0) — suitable for QIMs at the particle-hole symmetric point;

o SU(2)iso X SU(2)spin X Zg, i.e. good quantum numbers are total isospin I, total spin S and
parity P (symmetry type ISOLR).
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(qa.s) States (k)
—2.0) 1
(q,s) States (k) E—l, %)) bJ{; o
(=1,0) 1 1 (ot — afpt i
(0,2 of (0,0) biby G (ale 10 ) alaT
(1,0) a{a]% (0,1) bT Ji
1,1) 117 b, blalal
(a) One channel (2,0) aTalb b]L

(b) Two channels

Table 1.1: Basis states for additional sites for (Q,S) basis represented by the corresponding electron
creation operators that need to be applied on the empty vacuum state. Bold small-case q and s
are the quantum numbers of charge and spin on the added site(s), while k indexes different states
with the same (q,s).

For each symmetry type, the basis and coefficients for various NRG transformations are derived
symbolically using a Mathematica program that uses the sneg library. In the following, we will
describe the (@, S) and (1, .5) basis; other symmetry types are conceptually similar.

1.3.1 Construction of (@), S) basis — symmetry type NRG

At the very least, all physically relevant models are charge-conserving. In the absence of the
magnetic field, the problems are also rotationally invariant in the spin space; the total spin S and
the component S, are then also conserved. In addition, the component S, can be eliminated from
the problem by the use of the Wigner-Eckart theorem. It follows that we can classify states in
subspaces according to quantum numbers () and S.

We first consider the case of a single conduction channel. For brevity, we denote by aL the creation
operator for an electron of spin p on the site of the Wilson chain that is added at the (N + 1)th
NRG iteration, i.e. aL = f;r\,ﬂyu. The Fock space for the new site is composed of four states.
Due to rotational invariance, states form spin-multiplets. A single state from each such multiplet
needs to be retained, as all other members of the multiplet can be taken into account using the
Wigner-Eckart theorem; by convention, in each multiplet with spin S we retain the state with the
highest projection S, = S. The four basis states for the additional site are thus represented by
the three states given in Table 1.1a. In two-channel channel problems, two sites are added to the
Wilson chain in each iteration, one from each conduction band. The creation operators for the
second band are denoted by b, = f]TV 41,2~ The 16 states that form the Fock space of the two
newly added sites are represented by the 10 states given in Table 1.1b.

We also need a prescription for generating a basis with well defined @ and S for (N +1)-site Wilson
chain given the eigenstates of the N-site Wilson chain from the previous iteration. This is easily
accomplished using the angular momentum algebra (Clebsch-Gordan coefficients).!»? Let F;(QS)
denote the subspace QS at stage IV used to construct states |QSS,ri) y41 with well defined @, S, S,
at stage N + 1; index ¢ numbers the possible ways of adding the angular momenta together (i =
1,...,4 for one-channel case, i = 1,..., 16 for two-channel cases), while r numbers the consecutive
elgenstates in the subspace QS at step N. For convenience, we also define f/(S.) = S, =8.—

the spin projection S, for p-term in the expression, and g¢/(SS.) = SS,. With this short- hand
notation established, we are able to write the prescription as

S(i)
QSSariynvir = Y (gl(55:);5(1), ulSS:) [FA(QS) I (S2)r)n @ i, ), (1.6)
p==5(i)
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i Q S (a,s,k)
1 Q+2 S (=2,0,1)
2 Q+1 S-1 (-1,i1
3 0+1 S+1 (-1
4 Q41 s—% (—1%,2)
- - 5 1 S+1 (=112
a5 @l g oo e
1 Q+1 S (-1,0,1) 7 Q S (0,0,2)
2 Q S—2% (0,L1) 8 @ S (0,0,3)
3 Q S+§ (0,%,1) 9 Q S—1 (0,1,1)
4 Q-1 S (1,0,1) 10 Q S (0,1,1)
11 Q S+1 (0,1,1)
(a) One channel 12 Q-1 S-L (1,11
13 Q-1 S+1 (1Li1)
4 Q-1 s—1 (1,19
5 Q-1 S+i (112
6 Q-2 S (2,0,1)

(b) Two channels

Table 1.2: Subspaces F;(QS) = (Q,S) and basis states for the additional site used to construct
ith combination of basis states for the new iteration for (Q,S) basis

where <Slm1;52m2|5m> denotes the Clebsch-Gordan coefficient for joining spins S7 and Ss into
spin S, [)n+1 and |)n denote states for (N + 1)-site and N-site Wilson chain, |7, ) are the states
on the added site(s) tabulated in Table 1.1 and S(i) = s, the total spin quantum number of the
lip) state.

The rules for forming the new subspaces are given in Table 1.2. In “NRG Ljubljana”, these tables
can be found in files coef/1ch-In.cpp and coef/2ch-In.cppor, generally, in coef/*-In.cpp. As
an example, i = 2 and ¢ = 3 in the one-channel case correspond to two different ways of obtaining
total spin S by adding a SplIl—— object, either from S =S — 1 or from S = S + 2 The relevant
routines are input_subspaces, nrg_make_subspaces_list, and nrg_makematrix. It should be
noted in passing that a singlet and a triplet never couple into a singlet state (that would be a
violation of the triangle inequality). This must be taken into account when constructing state
¢ = 10 in the two-channel case; S = 0 is then forbidden (such checks are performed by routine
newcombination_allowed).

1.3.2 Construction of (/,S) basis — symmetry type IS0

When the U(1)charge conservation of charge symmetry can be extended to the full SU(2)is, isospin
symmetry, an additional complication arises due to the phase factor in the definition of the isospin
down component of the tensor operator (which corresponds to the annihilation operator). The
brackets of creation and annihilation operators must be expressed using the irreducible matrix
elements

(I'ILS'SLr' | f] IT1.SS.r) = (IL; A 3T T\(SS.3 4 ul S"SIY(I' S || 5|1 Sr) (1.7)
and
(I'TS"SLr! | fi W LS Sor) = (=)' (=2p)( I L35, — 5| T'I)(S 5255, —ul S"SIY(I'S'r'|| fi]| 1ST). (1.8)

Here i is the site index which takes even or odd values on the underlying bipartite lattice. As
the problem is assumed to be spin and isospin isotropic, neither S, nor I, play any role in the
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(i,s)  States (k)
(i,s) States (k)  (1,0) ala;bﬂﬁ
(3.0) alaf (3.5) ajbley, alajb]
(0,%) al 0,1)  —agby
(U (%GT bTbT) 7 (“IbT_aTbT)

(a) One channel

(b) Two channels

Table 1.3: Basis states for additional site in the isospin-spin (7, .S) basis. Bold small-case i and s
are the quantum numbers of charge and spin on the added site(s), while k indexes different states
with the same (i,s).

diagonalization of Hy41. The basis states for the added site of the Wilson chain are given in
Table 1.3.

The invariant subspaces are constructed in analogy to the case of (Q, S) basis in previous subsec-
tion. Again F;(IS) denotes the subspace IS at stage N used to construct states |I1.S5S., Ti) N1
at stage N + 1. We also define f*(1 D=L =1 —aqa, f'S.) =S, =S, —p, ¢*(IL,) = II,
and ¢/'(SS.) = SS.. The new basis is then formed using a double application of the angular
momentum addition rules:

1(3)

|IIzSSzi>N+1 = Z Z <gia(IIz);I(i)7a|IIz><gf(SSz);S(i)vM|55z>
a=—1I(i) p=—5(i)

X |F(IS) [ (L) fE(S2)r)n @ Jis s, ).

I(i) and S(7) correspond to i and s quantum numbers of states |i, 1, «). The rules for forming the
states are summarized in Table 1.4.

(1.9)
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i I S (i,s, k)

1 I-1 S (1,0,1)

2 I S (1,0,1)

3 I+1 S (1,0,1)

4 1-1 s-1 (4L

. _ tog_ 1 (12

i 1§ sk L ﬁfz 501 E%E
1 I—% S (%,0,1) 7 I+¥ S+¥ (?,?,1)
3 I S—% (0,%,1) 9 I+? S_¥ (?,?,2)
4 I S+3 (03,1 10 1-1 s+i (112
IR0 ST ST G o o

(a) One channel 12 1 S—1 (0,1,1)

13 I S (0,1,1)

14 I S+1 (0,1,1)

15 I S (0,0,1)

16 I S (0,0,2)

(b) Two channels

Table 1.4: Subspaces F;(IS) = (I, S) and basis states for the additional site used to construct ith
combination of basis states for the new iteration in the (I,5) basis

1.4 RG transformation and iterative diagonalisation

In this section we describe how the hopping Hamiltonian is actually solved. We define a series of
finite-size Hamiltonians of the form

N
Hy = AN/ Himp + He + Z Z A_n/an (fr];,u,afn-‘rl#ha + H-C) > (1~10)

n=0 p,o

so that the full Hamiltonian is given by the limit

H= lim (A‘N/QHN). (1.11)

N—o0

The factor AY/? in the definition of Hy rescales the energy scale so that the smallest dimensionless
excitation energy of Hy becomes of order O(1). In some sense this is reminiscent of the rescaling
of the fields in the momentum space renormalization or rescaling of the free energy per site in the
block-spin renormalization. The NRG iteration is then defined by the recursion relation

Hyy1 = R{HN} = VAHN + ) v (F] afniipa +He). (1.12)

JTNe

The energies are rescaled by v/A and one new site (one-channel problems) or two new sites (two-
channel problems) from the Wilson chain are attached to the system, see Fig. 1.7. This recursion
relation is the fundamental aspect of the NRG.!*2 Due to even-odd effects, the RG transformation
is actually defined by two consecutive NRG iterations:

Hyio = R*{Hn}, (1.13)
so that the renormalization flow in the NRG is represented by the sequence of Hamiltonians

..—Hy_9o— Hy — Hyj2 — ... (1.14)
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a) One-channel case
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b) Two-channel case
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Figure 1.7: Hopping Hamiltonians and the successive iterations of the NRG procedure: one site
from each channel is added during each RG step. As far as the NRG iteration is considered, the
impurity region is a black box: all that is required are the eigenstates of the sum of the impurity
and the coupling Hamiltonians, Hinp + Hc, and the irreducible matrix elements of the creation
operators for an electron on the first (indexed as 0) site of the hopping Hamiltonian computed in
the eigenbasis.

A simple way of seeing that R by itself cannot be an RG transformation is that during an iteration
step the energy levels are rescaled by v/A, therefore R cannot have a fixed point, since two
successive energies in the discretized conduction-band Hamiltonian are separated by a factor of
A.%* R2 however, does have fixed points.! It is also clear that the fixed point for even and odd
N are generally different."'® The number of NRG steps performed is set by parameter Nmax.

It should be noted in passing that the word “group” in renormalization group is actually inap-
propriate; in fact, it is in fact a “semi-group”. There is namely no inverse transformation. This
is related to the fact that information is “lost” (integrated out), either by doing coarse graining
(real-space RG) or by truncation (NRG). An inverse NRG iteration is therefore impossible.?®

The Hamiltonian Hy describes the physics at the energy (temperature) scale
D _
Ty x —AN2)3 (1.15)
kg

or, equivalently, at the length scale

Ly o BAN? [kp. (1.16)

Here (3 is a parameter of order O(1); the corresponding setting in “NRG Ljubljana” is betabar.
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The exact definition of T depends on the discretization scheme:

D1 5
Ty = k_§(1 + A_l)A_(N_l)/Q/ﬁ, for disc=wilson,
B
D 1 CINA—(N=2)/2 /7 : -
Ty = k;_§(1 +AHA /B, for disc=yoshida, (1.17)
B
D1-A"! -
Tn = k—ﬁAf(Nfz)m/ﬂ, for disc=campo.
B n

From Egs. (1.15) and (1.16) it follows that NRG iteration corresponds to L — oo and 7' — 0 at
the same time, but in a way that the size of the system is finite at all times. From this it follows
that NRG gives finite-size spectra. It should be kept in mind that the ground state degeneracy
of a finite-size spectrum is obtained by taking the limit 7" — 0 first, then L — oco. By taking
first L — oo and then T"— 0, a different GS degeneracy can be obtained. The two limits do not
commute’®°7! One should be aware of this when comparing with results obtained by means of
quantum-field-theoretical methods in the L — oo limit.

One might expect that due to the exponential decrease of hopping parameters it might be possible
to treat the successive sites in the Wilson chain by perturbation theory. This is not the case:!
when adding the (N + 1)st site(s) to a chain of N sites, the coupling of order A~"/? is a strong
perturbation for the lowest eigenstates of the N-site chain which are also on the energy scale of
A~N/2. We thus add a new site by performing an exact diagonalisation of a matrix Hy 1.

One NRG iteration (1.12) consists of using the states from previous step to construct the Hamilto-
nian Hyy1 (nrg_makematrix routine), then diagonalizing it numerically (diagonalize routine).
The full information about the system at step N is contained in the eigenstates of Hy and in
the irreducible matrix elements (||fx]|) (class IterInfo); this is clearly a much more detailed
description compared to a small set of coupling parameters used in the conventional RG (scaling)
approach. The Hamiltonian is written in the direct product basis |QS7i) N1 ~ |QST) ® i [here we
consider the case of (Q,S) basis, see Sec. 1.3 for other cases], therefore the Hamiltonian matrix takes
the form of a block-matrix: diagonal blocks are diagonal matrices, the diagonal elements being the
rescaled eigenvalues of the states |QSr) from the previous iteration; the out-of-diagonal blocks are
constructed from the irreducible matrix elements (QSr||f]|Q'S’r") weighted by coefficients that
can be derived from the corresponding Clebsch-Gordan coefficients (see routine nrg_makematrix).
These coefficients are given in Table 1.5 for the case of (Q,S) basis (see also Ref. 2). In “NRG
Ljubljana”, these coefficients can be found in coef/1ch-offdiag.cpp and coef/2ch-offdiag.cpp
or, generally, in coef/*-offdiag.cpp.

We then diagonalize the Hamiltonian in each invariant sector separately to obtain the eigenstates

|QSw) = ZUQS(w,riHQSM}, (1.18)

where Ugg is the unitary matrix which brings each Hamiltonian matrix in its diagonal form. Before
proceeding to the next NRG iteration, the irreducible matrix elements of the newly added site(s),

(QSill £ 41,./1Q"S"i"), need to be recomputed from the irreducible matrix elements (QSi| 1, ,,/|Q'S")
from the previous iteration. The coefficients are given in tables 1.6 and 1.7 and can be found in files
coef/1ch-spinupa.cpp, coef/1ch-spindowna.cpp, coef/2ch-spinupa.cpp, coef/2ch-spindowna. cpp
coef/2ch-spinupb.cpp, coef/2ch-spindownb.cpp or, generally, in coef/1ch-*.cpp; the corre-
sponding routines in “NRG Ljubljana” are recalc_f and recalc_irreduc.

Since the total number of states is an exponential function of the iteration number N (o< 4% in
the one-channel case and o 16" in the two-channel case), Wilson proposed to simply truncate
the number of states to some manageable size of the order of 1000 after each NRG iteration. The
idea is that, since the coupling between consecutive sites of the chain decreases exponentially for
increasing chain length, only the lowest-lying eigenstates are renormalized and the separation of
scales is thus maintained iteration by iteration.>*® This works because the matrix elements of f;r\,
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) ) channel coefficient

<

i1 channel coefficient ¢ 12 a 1
1 2 b 1 6 13 a 1
1
1 4 a 1 7 13 b 7
1 5 a 1 . 7 14 a v
2 6 b - 7 15 a v
2 7 a _ 1\/_525 8 14 b 1
Jr
9 9 & 1Y 8 15 b L ;
-3+
2 10 a L1+5 9 12 b 2
i i’ coefficient V1425 \/‘/gl—s
3 6 b 2(1+S) 9 14 a _ —5+
1 2 1 \/11++SQS 1\43;
1 3 1 3 a V1125 10 12 b —Y 2
2 4 28 3 10 a VS V3
V1428 1+28 10 13 b 2
3 4 v 3 11 a 1 vVES
NE 10 14 a 2
4 b T Virzs v
(a) One channel 4 8 2 _ \1/4235 10 15 a _ 1+23
4 9 b -1 11 13 b VA R
_ JIiS VitS
Loeh YIS 11 15 a Vits
5 7 b 1+5 VI+S
Vit2S 12 16 a — /28
5 3 2(14+59) V1425
¢ Vit25 13 16 a 21+5)
5 10 b __ Vs V1125
425 14 16 b — /28
5 11 b -1 V1+28
V2(1+S)
15 16 b NeEST

(d) Two channels

Table 1.5: Coeflicients for off-diagonal blocks in the Hamiltonian matrix in the (@, S) basis

i 4 coefficient ¢ 4 coefficient

2 1 1 3 1 1
V25741 V25 +1
4 3 ! 4 2 e
(a‘) Ql = Q - 17 (b) Ql = Q - 17
§'=85-1 S'=5+1

Table 1.6: Irreducible matrix elements (QSi||a’||Q’S"i') for creation operator on the additional
site in one-channel problems
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7 i coefficient ¢ 1" coefficient i i' coefficient ¢ 1" coefficient
5 1 1 4 1 1 3 1 1 2 1 1
2S°+1 /2541 /s +1 /S 1
7 2 2\/871 7 3 B S’Jrll 6 2 = 2 6 3 o \/5’74_12
8 4 S'+3 8 5 _ /S H+s 7 4 25’41 7 5 _ V28541
Vs VST 2VS’ 2vS'+1
0 2 - VZj’S:l 9 2 -1 10 4 Qj’s:l 9 4 1
2vs 7513 2vs 2513
11 3 -1 103 —375a 11 5 1 105 s H
13 6 1 12 6 1 12 9 S+1 12 7 -
S+1 4 7 -+ Vs s
14 9 — 1\/87 2 14 10 % 13 7 _% 12 10 \/5 S71+1
b7 -5 VEEST 13 10 £ 13 11 —V2iE
15 10 —¥ 15 11 Ve 15 8 1 4 8 1
S7+l Sl S’+l Sl
16 12 Vo= 16 13—V 16 14 Y= 16 15 -V
()Q =Q-1,5 = b)Q =Q-1,5 = (0)Q'=Q-1,5 = Q' =Q-1,5 =
S+3 s—1 S+3 S—1

Table 1.7: Trreducible matrix elements (QSi||a’||Q"S"i’) for creation operator a' (subtables a and
b) and for creation operator b (subtables ¢ and d) on the additional site in two-channel problems

are largest for similar eigenstates of Hy, while the matrix elements of f}:, between the low-lying
eigenstates of Hy and the highly excited states that are truncated are small.!

In “NRG Ljubljana”, truncation is controlled by parameters keep, keepmin and keepenergy.
Parameter keep restrains the maximum number of eigenstates that may be kept at each iteration; it
should be increased as much as possible within the limits set by available computational resources.
If parameter keepenergy is set to a positive value, the energy cut-off truncation scheme is used:
only the eigenstates with the (rescaled) energy below the value of the parameter will be retained.
The use of the energy cut-off truncation is recommended since a high number of states is kept
when the degeneracy is high, and a low number when the degeneracy is low; in this fashion,
the computational time is divided optimally between the iterations. Finally, keepmin sets the
minimum number of states to be kept. It should also be remarked that eigenstates in NRG tend
to be clustered. If the states are truncated in the middle of such a cluster, systematic errors
and symmetry breaking may be induced. Parameter safeguard enforces retention of additional
states, so that the “gap” between the highest retained and the lowest discarded state is at least
safeguard.

1.5 Computable quantities

While K. G. Wilson originally applied NRG to obtain the spectrum of excitations and the impurity
contribution to the magnetic susceptibility,! methods to calculate other quantities were soon in-
troduced: one can determine specific heat,”® %0 charge susceptibility,'®! entropy,? spin relaxation
rates,'92 and various zero-frequency response functions and equal-time correlation functions.!%?
NRG is demonstrably the most versatile tool in the field of quantum impurity physics.

1.5.1 Finite-size spectra and fixed points

The most easily obtained result in NRG is the spectrum of excitations above the ground state
as a function of the temperature. An important amount of information may be extracted from
the consideration of such spectra alone. It should be noted that the system size in NRG is finite
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Figure 1.8: Schematic representation of the NRG renormalization flow. The horizontal direction
represents the direction of decreasing energy scale (temperature), while the vertical direction
represents the multi-dimensional space of the effective Hamiltonians (which can be considered to
be parameterized by some large set of coupling constants). When the system is near a fixed point
(dashed boxes), its properties can be described by a perturbative expansion around the fixed-
point Hamiltonian. The diagram also illustrates the idea of universality: even for widely different
microscopic Hamiltonians, the low-temperature behavior of the systems is essentially the same.
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Figure 1.9: Pictorial representation of the ground state and excitations of a Fermi liquid.

at any iteration step: we say that we obtain finite-size spectrum. In contradistinction, the high-
energy cutoff scaling methods such as Anderson’s poor man’s scaling,'* multiplicative RG!%® and
Yuval-Anderson’s RGS work in the continuum limit (L — oo, where L is the system size).!%¢ Some
important quantities, such as the ground state entropy, depend on whether the system size is finite
or not when the 7' — 0 limit is taken®® (see also Sec. 1.4).

If the lowest lying eigenstates for successive (N — N + 2) NRG transformations remain (nearly)
unchanged, we say that a fized point has been reached. More accurately, fixed-point Hamiltonian
H* is defined as

H* = R*{H*}. (1.19)

With NRG, one can study the various fixed points of a given QIM, deviations from the universal
spectra (determined by the operator content of the fixed point'%®), and the cross-overs between
the different fixed points, Fig. 1.8.

If the excitation spectrum of a fixed point is in a one-to-one relation to the excitations of free
electron gas, such fixed point is called Fermi liquid fixed point. The spectra of Fermi liquid fixed
points are composed of excitations that change particle number (particle and hole excitations)
and excitations where a particle is promoted to a higher level (particle-hole excitations), and
combinations thereof, Fig. 1.9. The excitations of non-Fermi liquid fixed points do not have such
simple interpretation.

For Hamiltonian H near a fixed point H*, the NRG recursion relation can be expanded in powers
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of the deviation from the fixed point and linearized.!? Defining Hy = Hy — H*, we write
SHyyo = R*{H* +6HN} — H* ~ L*6Hy, (1.20)
where £* is a linear transformation. Like any linear operator, £* can be diagonalized
L0;7 = NOf, (1.21)

and we expand dHy as
SHy =Y ooy (1.22)
l

For A\ > 1, the contribution of corresponding eigenoperator O] will grow with N: we say that
such operators are relevant. For \]' < 1, the contribution will vanish and we name such operators
irrelevant. Finally, if A\j = 1, the operator O; is called marginal and its effect must be studied
more carefully by considering non-linear corrections to the RG transformation.'®” The operator
content of a fixed point determines its stability with respect to perturbations:? a fixed point with
relevant operators is called unstable, while a fixed point with only irrelevant operators is stable.
Fixed point with marginal operators can be either stable or unstable, or may lead to the emergence
of lines of fixed point and to the breakdown of the universality.'°” The knowledge of the leading
eigenoperators (i.e. those with the highest eigenvalues A}) is instrumental in establishing effective
Hamiltonians given by the fixed point Hamiltonian H* plus correction terms:?

HE = H + o ANY26H, 4w AN=D/26Hy 4. (1.23)

where w; and w9 are some coefficients which can be determined by analyzing the NRG spectrum.
For example, corrections to the Fermi-liquid 7" = 0 behavior of the Kondo model are determined
by the leading irrelevant operators.!

Saving of eigenvalue results in “NRG Ljubljana” is controlled by parameters trace, dumpenergies
and dumpannotated.

1.5.2 Static thermodynamic quantities: susceptibilities, entropy, heat
capacity

Static thermodynamic quantities, such as magnetic susceptibility, heat capacity and entropy, are
determined primarily by the energy level splittings of order kgT'. Energies much higher than kT
above the ground state are exponentially suppressed, while excitations with much lower energy can
be considered thermally washed out; this turns out to be a good approximation. Thermodynamic
quantities at temperature T can thus be calculated from the energy spectrum at the Nth stage
of the NRG iteration.!»** In the following, brakets denote grand-canonical averaging

(O) =Tr(Oexp(—pH)) /Z, (1.24)

where Z is the partition function Z = Tr(e*’BH) and f = 1/kgT. In practice, the traces are
computed in the truncated basis of NRG eigenstates at a given iteration step N, i.e. from a
finite-size spectrum. In “NRG Ljubljana”, the temperature dependence of static thermodynamic
quantities is output to file chi which must be postprocessed to obtain presentable results.

Magnetic and charge susceptibility

The temperature-dependent impurity contribution to the magnetic susceptibility Ximp(7') is de-
fined as ( 2
9HB 2 2
Ximp(T) = = ((82) = (SZ)o) (1.25)
kT
where S, is the total spin and the subscript 0 refers to the situation when no impurities are
present (i.e. H is simply the band Hamiltonian Hyand), g is the electronic gyromagnetic factor,
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1 the Bohr magneton and kg the Boltzmann’s constant. It should be noted that the combination
Tximp/(gip)? can be considered as an effective moment of the impurities, pes. In the presence
of the magnetic field applied only to the impurity site, (S?) needs to be replaced by (S?) — (S.)?
in accordance to the fluctuation-dissipation theorem. It may also be remarked that while K.
G. Wilson originally proposed to calculate (S?)q analytically, I find that it is more practical to
actually perform a NRG calculation of S? for a problem without impurities. This has an added
benefit in that similar artefacts appear in (S2) and (S?)o and they cancel when subtraction is
performed.

By analogy, charge susceptibility is defined as

1

=T ((12) = (12)0) , (1.26)

Xcharge (T)
where I, is the total isospin (recall that I, = @/2). In the absence of the particle-hole symmetry,
(I?) needs to be replaced by (I2) — (I,)2.

Heat capacity and entropy

Defining energy as £ = (H) = Tr (He PH), the heat capacity can be calculated from energy
fluctuations as O

O(r) = O = ki () — ()], (127
and we may define the impurity contribution to the heat capacity as Cimp(T) = C(T') — Co(T),
where Cj is the heat capacity of the conduction band without impurities. Furthermore, we have

OF =—InZ and E = F + TS, therefore

S E-F
kg kT

— BE— BF =BE +InZ, (1.28)

and we may define the temperature-dependent impurity contribution to the entropy as Simp(T') =
S(T)— So(T'). From the quantity Simp/kp we can deduce the effective degrees-of-freedom v of the
impurity as Simp/kp ~ Inv.

The convergence with the number of states retained in the NRG iteration depends on the quantity
being computed. For example, the energy accuracy required for a specific-heat calculation is
considerably higher than that for the susceptibility.”?

1.5.3 Correlation functions

To characterize the state of a quantum impurity system it is often useful to calculate various
correlations functions, i.e. thermodynamic expectation values of operators such as the on-site
occupancy (n;), local charge-fluctuations ((6n)?) = ((n; — (n;))?) = (n?) — (n;)?, local-spin (S?)
and spin-spin correlations (S;-S;). In turn, these can be used to compute more complex quantities

such as the concurrence which measures the entanglement between two qubits.!%®

In “NRG Ljubljana”, the operators of interest are specified by writing the corresponding expression
in terms of the second quantization operators. A number of auxiliary routines are available to
simplify this process and the most commonly occurring operators are already built in the pro-
gram (configuration setting ops). During the problem setup step, the operators are transformed
in their matrix forms and rotated into the eigenbasis of the initial Hamiltonian by performing
suitable unitary transformations: all these steps are performed automatically “behind the scenes”
by the Mathematica part of the NRG package. This approach turned out to be extremely flexible,
since the user can focus on physics rather than hand-code low-level routines and worry about
implementational details.

To be able to make full use of the symmetries of the problem, the operators need to be expressed
in the form that makes them singlets with respect to the symmetry group. For example, n? is
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a spin-singlet, and can be directly computed in the (Q,S) basis. It is not, however, an iso-spin
singlet, but (n; — 1)? = ¢? is. For a computation in the (I, S) basis, one therefore performs a
calculation for ¢? and adds 2(n;) — 1 = 1 to the results (recall that (n;) = 1 due to the p-h
symmetry). In the presence of mirror Zs symmetry, it must be taken into account that operators
may be even or odd with respect to the reflection. In the case of two impurities embedded in a
series between two conduction leads, for example, n. = ny; + ng is even, while n, = n; — ns is
odd. In a calculation where reflection symmetry is explicitly taken into account, the expectation
values (n1) and (ns) can be obtained by calculating suitable combinations of (n.) and (n,) after

the NRG run.

More generally, “NRG Ljubljana” supports operators that are singlet, doublet or triplet with
respect to spin and singlet or doublet with respect to isospin. This is sufficient for all calculations
of interest, but support for more general symmetries may in principle be easily added.

1.5.4 Dynamic quantities

A major extension of the NRG was a method to calculate dynamic properties such as the spectral
functions.20:89: 109112 YWhile T" = 0 conductance of Fermi-liquid systems may be obtained from
finite-size spectra alone, T" # 0 and AC conductance, as well as the conductance of non-Fermi-
liquid systems can only be computed if spectral functions are known.?* 13117 Using NRG, one
can determine local single-particle (spectral function, ((dmdl))w), magnetic (dynamic spin sus-
ceptibility, ((S.;S.)).) and charge excitations (dynamic charge susceptibility, ((n;n)),). It is also
possible to distinguish between elastic and inelastic contributions to the scattering cross-section.!*®

The conventional approach to the NRG spectral density calculations is based on the observation
of Sakai et al.?? that as we proceed from one iteration to the next, the lowest few eigenstates split
due to the interaction with the added shell states, while the intermediate lower levels do not show
any essential change. The intermediate states thus form a good approximation of the eigenstates
of the Hamiltonian in the N — oo limit and are thus used to compute the excitation energies and
the transition matrices.

The spectral function matrix for multi-impurity problems is defined as
Aij = =1/2m)Im(G}; + GY,), (1.29)

where G7;(w) = ((dw;d;-u))w is the (out-of-diagonal for i # j) retarded Green’s function of the
impurity. It can be computed using standard NRG techniques from matrix elements of the creation
operators using the following spectral decompositions:

45w >0) = 2 3 Re [ ((mldllno)) " (mlafno)]

m,ng

x 0(w— En),

iy <0)= 2 3 Re [ ((mold{|n)) " (moldm]

mo,n

x 0(w + Ey),

(1.30)

where Z is the spectral sum Z = Tr(e=#f), indices mg,no with subscript 0 run over (eventually
degenerate) ground states and indices m,n without a subscript over all states. Note that there is
a sum rule

/oo Aij (w)dw = (Sij, (1.31)

— 00

which follows from the fermionic anti-commutation relation a;ruaju + ama;ru = 4.
Calculations can be improved by directly calculating the one-particle self-energy X (w);?® this
approach leads to more accurate results and it is especially suitable for applications of NRG as an
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impurity solver in the DMFT.” Further improvements include a better approach to merge partial
spectral information from consecutive NRG iterations'!? (in “NRG Ljubljana” the result of the
conventional spectrum calculation is output to files spec_*_pts_x.dat, while the result obtained
with the N/N-+2 trick is output to files spec_*_dens_#.dat). For problems where the high-energy
spectral features depend on the low-energy behavior of the system, the spectral density has to be
computed taking into account the reduced density matrix obtained from the density matrix of
the low-temperature fixed-point: this is the density-matrix NRG (DMNRG) developed by W.
Hofstetter.!? This approach is needed, for example, in the case of the Anderson impurity in
magnetic field,'?° or for the side-coupled double quantum dot near the points of ground state level
crossing.%¢

Recently, a time-dependent NRG was introduced!'?! by generalizing the idea behind the DMNRG:
time-dependent NRG makes possible to study the effects of sudden changes of the parameters
and the ensuing relaxation to the steady state solution. In this approach, a density matrix in full
Fock space is introduced by judiciously using the information from the discarded part of the NRG
eigenstates. This idea has led to new approach for calculation of equilibrium spectral functions:
the “full density matrix” NRG'22 or “complete Fock space” NRG.'2? This method does not suffer
from over-counting of excitations, it fulfills sum rules and correctly reproduces spectral features
at energies below the temperature.

An important observation for practical calculations is that as the number of states retained is
increased, the calculated spectra do not suddenly change; they rather gradually improve and
converge toward the true spectrum.2 This implies that even rough spectra are qualitatively
correct.

1.5.5 Spectrum broadening and smoothing

Since quantum impurity models are represented in NRG by a hopping Hamiltonian of a finite size,
the computed spectral functions are represented as a sum of delta peaks. To obtain a meaningful
continuous function, these peaks need to be broadened. The original approach to obtaining a
smooth curve was by Gaussian broadening, followed by separate spline interpolation of results
in odd and even steps, and by the averaging of the two curves.2® A better approach is the

logarithmic-exponential broadening:''® each data point (delta function peak at wg) is smoothed
into
—b%/4 (1 —1 )2
e nw — Inw
F; = — T Se—— 1.32
b(W,WO) bﬁ exXp ( b2 ) ’ ( )

i.e. a Gaussian function on a logarithmic scale, where b is a broadening parameter, typically
b = 0.3. One should keep in mind an important feature regarding the broadening procedure.
Namely, due to broadening the spectral resolution at energy w is always limited to

dwy =w (ebm — 1)

Sw_ = w (1 _ ew«@) (1.33)

For high-energy part of the spectrum (say w = 1) this limits the resolution to [—0.22;0.28] at
b = 0.3. Peaks sharper than this will thus appear broader than they truly are. NRG is therefore
not a reliable method to determine the spectral features at high energies.

Furthermore, low energy features are also slightly deformed. The action of the broadening is to
replace

f(w) = / Qwof@o)d(w —wo) — flw)= / Ao f (wo) Fi(w, wo). (1.34)
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Figure 1.10: Effect of logarithmic broadening on a Lorentzian curve.

Let us consider its effect on a narrow Lorentzian of width A centered at w = 0:

B o] AQ
f(w)z/o dWOWFb(W,WO)

/+oo 4 A2 efb2/4 . (y _ y0)2
= X —_—
oo 4o exp(2yo) + A% by/w P b? ’

(1.35)

where we performed substitution In wg = yy and introduced y = Inw. The limit w — 0 corresponds
to y — —oo. The integrand is a Gaussian-like function centered at y with a yy dependent weight
o 1/(exp(y3) + A?). For small enough w (to be concrete, w < A), this weight becomes a
constant and the integral can be evaluated exactly. We find lim,, o f(w) = exp(—b%/4). For
b = 0.3, this gives 0.98. In other words, even in the absence of any other approximations, the
logarithmic broadening at b = 0.3 introduces an error of few percent in the Kondo peak weight.
In addition, the Lorentzian is narrowed, see Fig. 1.10. These facts must be taken into account
when quantitative details in the results are important. In that case b should be reduced as much
as possible. Typically, the value of b is chosen to be 0.3 or less (parameter loggauss_b).

1.6 Recursion relations for operators

After each iteration, expectation values of operators of interest are computed and the irreducible
matrix elements of these operators recomputed in the new eigenbasis for the next iteration. It is
important to note that it is only possible to consider operators that transform as tensor operators
with respect to the symmetry group that is taken into account in the NRG implementation. As an
illustration, we consider the case of the (Q,S) symmetry and a tensor operator operator O of rang
M with respect to the spin SU(2) group. The information about the operator O at iteration N is
entirely contained in a matrix Oy of irreducible matrix elements (QS7[O|/Q’S’r'). The non-zero
subspaces for singlet operators have Q = Q" and S = S’, for doublet (creation) operators we must
have Q@ = Q'+ 1 and S = S’ £+ 1/2 and for triplet operators (such as spin) we must have Q = Q’
and S = 5" or S =5"+1. In the basis of eigenvalues |QSw) of the (N + 1)st iteration, we write

(Q55.w|0,]Q'S'S.w') N 11

S, O /S/ / _
<Q WH ”Q w>N+1 <S/SQ,M/.L|SSZ>

(1.36)
To make this expression meaningful, we can choose, for example, S, = S, p = M, S, =S5 — M.
We then have

Y opirri Ugs(w, ri)Uqgrsr (W', riNQSSri|On|Q'S', S — M, 1) n 11
(5,8 — M;MM|SS)

(QSw]|0]|Q'S'w )N 41 =
(1.37)
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We then take into account the definitions of |QSS,ri) states, (1.6), and write

_ c(@5,Q'S",ii’, )
RRpIPY (S, — M;MM]|SS) (1.38)

ri,r'i’ af

x Ugs (w, ri)Uqrs (' r'i' ) (F,(QS) £ (S)r|Oar |F (Q'S") £11(S — M)r' )1,

where ¢(QS,Q'S’,ii',af3) is a scalar product between (q,s,k) states on the added sites of the
Wilson chain and «, § are the corresponding s, components of these states. We rewrite this as

-3

i a8

< Y Ugs(w, ri)Uqrs (W', 7' ) (F(QS)r|| Ol Fi (Q'S")r') v

rr!

c(QS, Q'S ii',aB){gh (S, S — M);MM|g&(SS))
(5,8 — M;MM|SS)

(1.39)

After taking into account which subspaces F;(QS) and F; (Q'S’) are connected by operator O and
performing the sums over « and 3, it turns out that for given (Q.S) and (Q’S’) subspaces, only a
small number of (i7') combinations contribute. We finally write

(QSw[0IQ'S' )1 =) C(QS, Q'S i) Y Ugs(w, ri)Uqs (&', 11 ) (Fi(QS)r[[ Ol Fir (Q'S")r") -
i1/ rr!

(1.40)
The coefficients Cgs g/s,ii are computed using a computer algebra system and they are tabu-
lated in the Appendix. The corresponding routines in “NRG Ljubljana” are recalc_singlet,
recalc_doublet and recalc_triplet; they all call a low-level routine recalc_general which
performs the actual computation. The coefficient tables can be found in files *-singlet.cpp
(for singlet operators), *~doublet*. cpp (for doublet operators) and *-triplet*.cpp (for triplet
operators).



Chapter 2

NRG - User’s Manual

2.1 Nomenclature

In the single-channel case, the impurity site is denoted by d, and the conduction band (or, more
accurately, the first site of the corresponding Wilson chain) by fy. When additional impurities are
added, they are named a, b, ¢, e. In the two-channel case, the conduction bands are fy and fi.
Note that fo is the first site of the Wilson chain of the first band, while f; is the first site of the
Wilson chain of the second band. In particular, f; is not the second site of the Wilson chain. If
o =1,2is a band index and j = 0,1, 2,... the site index along the Wilson chain, and we denote
the Wilson chain operators by gq,;, then fo = g1,0 and f1 = g2,0-

2.2 Running the NRG code

First we need to call Mathematica and generate the “data file”, which will contain the eigenvalues
of the initial Hamiltonian, irreducible matrix elements (QSr||f1]|Q"S'r’) and irreducible matrix
elements for each singlet/doublet/triplet operator that we wish to evaluate. The program must
be called from the command line with

./nrg -d [-p paramfile]

Here -d indicates that we are generating the data file. Mathlink is used in this case to run the
Mathematica code. The default file name for the parameters file is param. The file name of the
generated “data file” is by default data, but it can be overridden by a setting in the parameters file.
Output file mmalog containing output from Mathematica is also generated; it should be inspected
to see if the problem setup was successful.

The NRG program proper takes in the same paramfile as input, but expects the suitable datafile
to be prepared in advance. A suitable call would be

./nrg [-p paramfile] [>log]l [2>log2]

It might be a good idea to redirect stdout to a file, because it contains interesting information
about the NRG iteration, such as (@, .S) of the ground state. stderr can be used to follow how the
iteration proceeds.

2.3 Parameters file

All lines starting with # are ignored. Sections start with [section name]. There are cur-
rently two sections: [param], where parameters from tables 2.1, 2.2 and 2.3 are set, and section

24
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[extral where additional model parameters are set (see tables 2.8, 2.9, 2.10). The syntax is
keyword=value.

Note that both keywords and values are case-sensitive! There is currently little syntax checking,
so be careful! All settings, as parsed by the program, are dumped to standard output, where they
may (and perhaps should) be checked for correctness.



26

CHAPTER 2. NRG - USER’S MANUAL

Parameter

Type

Default

Description

model

variant

channels
discretization

band

ops
mixed

Nmax
Lambda

betabar
keep
keepmin

keepenergy

safeguard

string

string

int
string

double

string

string
bool

int
double

double
int
int

double

double

SIAM

Wilson

flat

false

50
1.0

0.460

100

<0

0

Model (Hamiltonian). See tables 2.8, 2.9 and 2.10. Generally, this
sets the number of interacting sites, the topology and the coupling
to the leads.

Variant of the Hamiltonian. This sets, for example, additional
interaction terms. See the tables.

Number of channels. Currently 1 or 2.

The discretization scheme: possible values are Wilson, Yoshida
and Campo. The first corresponds to the original Wilson’s dis-
cretization, the second is the z-shifted discretization due to
Yoshida et al., and the last is the discretization based on an over-
complete basis due to Campo et al. The recommended discretiza-
tion scheme is Campo.

The value of parameter z in Yoshida and Campo logarithmic dis-
cretization schemes.

The type of the conduction band, i.e. the energy dependence of
the density of states. The default flat corresponds to a constant
density of states, p = 1/(2D). Other possibilities are cosine and
dmft.

Which operators should be considered? See table 2.7.

Calculate out-of-diagonal spectral functions, such as A,,. Note:
this parameters only takes effect if more than one doublet opera-
tors is selected in ops.

Number of NRG iteration steps taken.

Logarithmic discretization parameter. A = 1.5 is suit-
able for calculation of spectral densities, A = 2 for most
other (thermodynamic) calculations in the 1-channel case. If
discretization=Campo is used, A can be increased to very high
values if the z-trick averaging is used.

(3, this sets the temperature in the thermodynamic calculations.
See Ref. 2.

Maximum number of eigenstates to be kept at each stage. keep
should be increased as much as possible.

The minimum number of states to be kept at each stage. keepmin
< keep.

If keepenergy >0, the energy cut-off truncation scheme is used:
only the eigenstates with the (rescaled) energy below the value
of keepenergy will be retained. This is used in conjunction with
keep which sets the maximal number of states kept irrespective
of their energy, and keepmin which sets the minimal number of
states kept irrespective of their energy. The use of the energy
cut-off truncation scheme is recommended, since a high number
of states is kept when the degeneracy is high, and a low number
when the degeneracy is low; in this fashion, the computational
time is divided optimally between the iterations.

Eigenstates in NRG tend to be clustered. Setting safeguard to
a finite value enforces retention of additional states, so that the
“gap” from the highest retained to the lowest discarded state is
at least safeguard. A small value should be used, for example
0.001.

Table 2.1: Parameters for NRG program, section [param].
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Parameter

Type

Default

Description

strategy

Almabda

loggauss_b

lorentz_b

limitLL

finite
dmnrg

goodE

mesh
discardfactor

discardtolerance

string

bool

double

double

double

bool
bool

double

int
double

double

all

false

0.3

0.6

4.0

false
false

2.5

10
1077

0.01

Determines which eigenstates are used in the computation of ex-
pectation values and spectral functions. If the default setting
strategy=all is used, all eigenstates are used. This increases
accuracy, but is slow. If strategy=kept is used, only those eigen-
states are used that will be kept after truncation. This mode of
operation is much faster, since a smaller number of the irreducible
matrix elements needs to be recomputed.

If A correction is enabled, I' is multiplied by A(A) = 1(1 +
A™H /(1 — A=Y log A. This is needed to compare the discretized
model with the original continuous Hamiltonian precisely. Note
that A(2) = 1.04, so for low A this correction is not necessary.
For discretization=Wilsonand discretization=Yoshida, this
correction must be used. For discretization=Campo, the correc-
tion must not be used.

Width of logarithmic Gaussians used in broadening of the spectra:

e~b?/4 (Inw—Inwy)? .
gnd(w — wy) — Intm e €XP [—T” . Values in the range

0.3 < b < 0.6 should be used.

Prefactor for Lorentzian broadening for frequencies w < limitLL T’
(for finite temperature dynamic calculations).

Sets the limiting energy limitLL 7" below which Lorentzian broad-
ening is used. By setting this value to 0, we can disable Lorentzian
broadening altogether. This is useful for effective “7T" = 0” calcu-
lations.

Do finite-temperature calculations using the Costi, Hewson, Zlatic
approach!%?

Do the density-matrix numerical renormalization group calcula-
tion'20? Currently implemented only for 1-channel problems.
Energy w = goodE w,, at which the spectral density is evaluated.
Value 2.5 is fine for 1-channel calculations, but it might need to
be lowered for 2-channel calculations due to the higher degeneracy
which lowers the interval of energies, where spectral information
is valid. We should choose as large a goodE as possible, if the
range of reliable states is large enough.

Extra points used to evaluate the spectral density. Energy points
used are €; = goodE w, A¥/™" with i =0, ..., mesh — 1.

Delta peaks with weight lower than discardfactor w, will be dis-
carded. This can reduce memory usage and execution time.

If too much cumulative spectral density is discarded, program will
abort. This value should be increased for DM-NRG (4-5%), where
spectral density may be lost due to round-off errors.

Table 2.2: Continued. Parameters for NRG program, section [param].
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Parameter Type Default Description

broaden_max double 2.5

broaden_min double

broaden_ratio double 1.05 These three parameters set the mesh of energy points used to
obtain the continuous spectral density using the N/N + 2 trick.
The default values should usually be used.

dumpenergies  bool false Dump all energies to a file.

dumpannotated bool false Dump all eigenstates in the form of (quantum numbers) (energy)
pairs.

trace bool false Trace the NRG iteration: output files are named NNN.energies.

loglabel string delta  Which variable should be used to label results in output files?
This should be used in parameter sweeps to obtain a suitable first
column.

rawpeaks bool false Save all (g,,,w,) pairs calculated in the spectral density calcula-
tions. This is useful for testing various peak broadening proce-
dures and for troubleshooting.

factorextra double 1.0

Nextra int -1 The value of keep can be increased by a factor of factorextra>1
after Nextra steps. This way it is possible to achieve better spec-
tral resolution at very low frequencies. This may help to obtain
better A(w), which is used in conductance calculation using Meir-
Wingreen formula.

data string  data File containing the information about the initial Hamiltonian
(eigenstates, irreducible matrix elements for the Wilson’s chain
and for operators defined on the impurity).

verbose bool false Increases verbosity level. Can be useful for debugging, but also
for getting more information about the physical system.

log string What information to dump to the standard output. See Table 2.5.

mmadebug int 0 Set the level of diagnostic messages in the Mathematica part of
the program. The output file is called mmalog. Use of value >=1
is recommended.

diag string  dsyev Choose the diagonalization routine. Either dsyev or dsyevr LA-
PACK routines can be used. The latter makes possible to calculate
only a finite number of eigenstates for each Hamiltonian matrix.

diagratio double 1.0 The ratio of the eigenstates computed using the dsyevr routine.
This value should, in principle, be set somewhat above 0.25 for
one-channel problems, and above 0.0625 for two-channel prob-
lems. Depending on the problem, larger values might actually be
necessary in order to avoid systematic errors.

dsyevrlimit init 100 The minimal size of the matrix for diagonalization using the
dsyevr routine.

options string Additional options that are passed to the Mathematica part of the
program. They are listed in Table 2.6.

perturb string An arbitrary string that is added to the Hamiltonian expression.
This may be used for trying out the effect of various perturbations
to the model Hamiltonian.

calc0 bool false Perform calculation of physical quantities at the initial (0-th)

NRG step, i.e. before the first NRG iteration.

Table 2.3: Continued

. Parameters for NRG program, section [param].
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Parameter Term in Hamiltonian Description

d (delta) d(n—1) Deviation from particle-hole symmetric point (if the selected
model has such symmetry at alll). Related to gate-voltage by
€d = o — U/2

U (0) Uning — U/2 (R — 1)*>  On-site electron-electron repulsion.

I (Gamma) Coupling to the leads.

Table 2.4: Mandatory parameters in all models.

Token Description

d Diagonalization process (low-level information)
i Iteration process (subspaces, timing, ...)
e Dump eigenvalues in function diagonalize(). Up

to logenumber values are dumped.

m Dump Hamiltonian matrix of each subspace

S Dump ancestor subspaces during the construction of
the Hamiltonian matrix

X Dump values of xi ()

X Dump values of XbXf ()

f Follow the recalculation in function recalc_f

T Follow the recalculation in function recalc_general

g Details about the DM-NRG run

a Details about the deta file

¢ Details about the spectral density calculation

|

Full details about the spectral density calculation

Table 2.5: The tokens to be used to specify the level of logging. The tokens must be given
successively as the value of parameter log. For example, use log=di to log the details of the
diagonalization process and the NRG iterations.

Option Description

READXI Read the values of coefficients xi from files.
READBASIS Read the basis states from files.
READHAM Read the Hamiltonians from files.

Table 2.6: The options for options setting in the parameter file. These values are passed to the
Mathematica part of the program for low-level tweaking.
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2.4 Operators

Note that a “singlet operator” must be symmetric under all symmetry groups taken into account
in the calculation and be, furthermore, a singlet tensor operator with respect to all the symmetry

CHAPTER 2. NRG - USER’S MANUAL

groups. For example, 72 is not isospin symmetric, while (7 — 1)? is.

Name Operator Description

n_i ng =Ny +ny; Occupation number. ¢ € f,d,a,b

n_i"2 n? = (nyi+ny)° = nyi+  Occupation number squared

nyi + 2nping;

q_i g =ny+n;—1 Occupation number with respect to half-filling.

q_i"2 q? Charge fluctuation in the particle-hole symmetric
case.

n_in_j nin; Inter-site product of occupation number operators.
These are required to calculate the total charge fluc-
tuation from formula (N?)—(N)?, where N = Y. n;.

ntot Do The total occupancy of impurities. Index 7 in the
sum ranges over impurity sites only (i.e. d, a, b,
etc.).

ntot"2 (Y, ni)? The square of the total impurity occupancy.

§°2 (>-:8:)2 The square of the total impurity spin. Index i in the
sum ranges over impurity sites only.

q_iq_j q:q; Intersite product of occupation number operators
(wrt half-filling).

A_i Im GE(w) Spectral density. A_i actually enables calculation of
doublet operator if. This is then used in various
evaluations of spectral density.

sigma_i X;(t) = (S.(t)S.(0)) Calculate dynamic spin susceptibility. This enables
calculation of triplet operator o;, which is then used
in evaluations of spectral density.

PO (nya—1)(nyp.a—1) Projector to zero occupancy subspace. [QSZ]

Pu nya(nya—1) Projector to spin-up occupancy subspace. [QSZ]

Pd ny da(nya—1) Projector to spin-down occupancy subspace. [QSZ]

P2 Nny,daN|.d Projector to double occupancy subspace. [QSZ]

Szd S5 The spin component along the z-axis. [QSZ]

SZ2d (S7)? The spin component along the z-axis squared. [QSZ]

Sdsd s2 Local spin squared.

Sdsf Sq-Sy Spin-spin correlation function.

Table 2.7: Operators known to initial.m
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Model Variant

Description

Additional parameters

CLEAN -

No impurities.

SIAM - Single-impurity Anderson model. The impurity site

(dot) is indexed d.
Hsiam =0(ng — 1)+ U/2(ng — 1)2
[+VT (fhodo + Hec)]

MAGFIELD Anderson impurity in magnetic field. B
Hsiam + BSS

SIDE - DQD, side-coupled configuration. The side-coupled t

dot is indexed a.
Hsipg = Hsiam +90(na—1)+U/2(n, — 1)2 +t(aj7dg +
H.c.)

MAGFIELD Side-coupled DQD in magnetic field. t, B
Hgsipg + B(SZ + 5%)

DNI Central dot d is non-interacting, but if feels the gate t
voltage
§(ng—1)+6(ng—1)+U/2(ne —1)?2 +t(ald, +H.c.)

Uad Model SIDE + charge-coupling between sites a and t, Uad
d
Hsipg + Ugd(na — 1)(ng — 1)

Jad Model SIDE + spin-coupling between sites ¢ and d  t, Jad
Hsipg + JadSa - Sa

Tad Model SIDE + electron pairing interaction (two- Tad

electron hopping) between sites a and d
Hsipg + Tad(aJ{aIdel + H.c.)

Table 2.8: Models and variants provided as examples in initial.m and models.m. The list is
not complete: see the cited files for additional model definitions. Single-channel, one/two-
impurity problems.

Model Variant

Description

Additional parameters

RING -

Ring consisting of two dots, d and a, coupled sym- deltaeps

metrically to two leads.

(§ + deltaeps)(ng — 1) + U/2(ne — 1)® + (6 —

deltaeps)(n, — 1) + U/2(n, — 1)?
{Jm/f (fgad[, + fl a0 + Hc)]

INVERSESIGN One U is positive, the other is negative
(0 + deltaeps)(ng — 1) + U/2(ng — 1) + (6 —

tad

deltaeps)(ng — 1) — U/2(ng — 1)2
Electron hopping between sites a and d.

deltaeps

deltaeps, tad

Uad

(6 + deltaeps)(ng — 1) + U/2(n, — 1) + (6 —
deltaeps)(n, — 1) + U/2(ng — 1)? + taa(dfa, + H.c.)
Charge-coupling between sites a and d

(§ + deltaeps)(ng — 1) + U/2(ny — 1)® + (6 —
deltaeps)(ng, —1)+U/2(ng—1)*+Usa(ng—1)(n,—1)

deltaeps, Uad

Table 2.9: Continued. Single-channel ring model and tripple quantum dot.
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Model Variant Description Additional parameters
ONE Two-channel, one-site problems
SIAM Single impurity Anderson model
H +3. o VT2 (f) . dy + H.e.
SIAM i=L,R 0oi™"0
THREE Two-channel, three-sites problems
NEWTQD Symmetric linear chain tpp
Yicapadni  — 1)+ U/2(n — 1?2 +

t" (aldy + dibs + H.c.)
VT (flpan + flopbo + 1)

Table 2.10: Continued. Two-channel models.
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Filename

Description

chi

annotated.dat
cond

custom

cust

data

dmnrg

report.*
spec_TYPE_[dens|pts]_0P.dat

Impurity contribution to magnetic susceptibility, thermodynamic
expectation values (S2), (S.)?, and (Q), entropy, free energy, heat
capacity, etc.

NRG eigenvalue spectra as { value, quantum numbers } pairs.
Conductance at the lowest temperature:

e A(w), FR - Friedel sum rule from spectrum (only makes
sense at T=0)

e pts, MW - Conductance from spectral density and Meir-
Wingreen formula

Temperature dependent thermodynamic expectation values of se-
lected operators

As above, but for the lowest temperature only. Instead of the
temperature, however, the first column is the value of the param-
eter selected by label in the parameters file, which is delta by
default. This file is used to facilitate gathering of the results of
parameter sweeps.

Input file for NRG iteration (generated by Mathematica)
Statistics about density matrices.

Debugging information, such as initial eigenvalues.

Spectral density corresponding to operator 0P, which can be
A_i-A_i forlocal density of states, A_i-A_j for the imaginary part
of the symmetrized out-of-diagonal components of the retarded
Green’s function, or sigma_i for dynamic spin susceptibility.

e TYPE=TO - “zero temperature”’ spectral density
e TYPE=FT - finite temperature spectral density

e TYPE=DMNRG - spectral density calculated using density-
matrix NRG

e TYPE=spin - dynamic spin susceptibility
e dens = N/N+2 trick for obtaining smooth spectra

e pts = raw, rougher spectrum

Table 2.11: Output files and their contents
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2.5 Adding new models

Additional models are to be defined in models.m or, preferably, in custommodels.m. At the very
least, the model definition should define the number of impurity sites NRDOTS, and the Hamiltonian
H. Some default Hamiltonian definitions are assigned to H1 and Hc in initial.m, so that H1 is the
single-impurity Anderson model (impurity part) and Hc is the coupling term (electron hopping
from the impurity to the band). Different models can then be defined by adding to H1 and Hc, or
by overriding these definitions altogether.

If ISO or ISOLR symmetry type is used, the lattice indexes must be set up correctly using nnop, so
that even-indexed sites correspond to one sublattice and odd-indexed sites to the other sublattice
of the bipartite lattice (it should be recalled that the isospin symmetry can only exist for lattices
that are bipartite with respect to the electron hopping).

If ISOLR or QSLR symmetry type is used, the left-right correspondence must be defined with list
lrchain. The principle here is that operators in this list correspond to operators in the reversed
list. For example, if lrchain={ £[0], all, b[]l, f[1] 3}, then £[0] is paired with £[1], and
a[] is paired with b[].

If BASISRULE is defined, the operator given is applied to each basis state in turn. The obtained
basis is then orthonormalized. Using this approach, certain unneeded subspaces can be projected
out. For example, the Hilbert space of the Kondo model can be defined using a d[] orbital with
zero and double occupancy subspaces projected out, so that only the two single-occupancy states
with spin up and down remain.

If a new parameter is introduced, it should be added to the list params that is defined at the
beginning of models.m. The general rule is that for a new parameter z, a line such as x ->
faktor extrax should be added. Here faktor is needed, since the Hamiltonian is rescaled before
the NRG iteration is started The prefix extra is needed, because it is automatically prepended to
each parameter defined in section [extra] of the parameters file to avoid “name-space collision”.

2.6 Adding new operators

Additional operators are to be defined in file operators.m or, preferably, in customoperators.m.
The defining operator expressions can be expressed using the operators of the second quantization
using the helper functions of the sneg Mathematica package such as number, spinspin, hop,
chargecharge, etc. Consult the documentation and the source of the package sneg for details.
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Recursion relation coefficits

i i CQS,Q8i) i i C(QS,QS i)
1 1 1 1 1 1
9 9 24/S(S+1) 2 2 -1
TS 9 3 __1
32 231“ gs‘ /+sls 1
3 3 -1 3 3 -WIEHD
4 4 1 4 4 1
(a)Q,:Q_LS,:S'i— (b) Q,:Q_la S =
1 s—1
2 2

Table A.1: Coefficients in the recursion relations for doublet operator in one-channel problems
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i i QS8 i) i i C(QS,QS, i)
1 1 1 1 1 1
9 o _2V/5049 2 2 -1
1+2S 2 3 1
3 2 1 1125
1+25 20v/S(T5)
4 4 _ 2\/ S(1+S) 4 4 -
1+2S 4 5 1
5 4 153 N
24/8(14+S
6 6 1 6 6 1
707 1 707 1
8 8 1 8 8 1
1 1
9 9 -3+ 15 g 5190 1 X
M T T o
e Ve 10 10 s
10 10 \/(1+s)(1+2s)(3+2s) o 1 \/S(1+f)(_1+28)(1+25)
S - -
_ 1 S S
11 10 — Va+ ><1+2 ) .
11 11 1 11 1+ 955 — 1955
12 12 24/S(1+5S) 12 12 -1
INREEE 12 13 ——io
13 12 s o/ 50TE)
13 13 -1 13 13 ——F5—
4 14 2,/S(14+S) 14 14 -
o s 14 15 —1c
15 14 g 2/5(75)
B 15 —1 15 15 ——F5
16 16 1 16 16
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